
1

Introduction to Artificial Intelligence

Semester I, 2016-2017

Instructor: Dr. Rawaa D. Al-Dabbagh

Third Class – Department of Computer Science

University of Baghdad

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

1. Artificial Intelligence Overview

Artificial Intelligence (AI) is the branch or field of computer science that is concerned

with the automation of intelligent behavior. Major AI researchers and textbooks define

this field as “the study and design of intelligent agents”, in which an intelligent agent is a

system that perceives its environment and takes actions that maximize its chances of

success. John McCarthy, who coined the term in 1955, defines it as “the science and

engineering of making intelligent machines”. AI has a long history but is still constantly

and actively growing and changing. It has become an essential part of the technology

industry, providing the heavy lifting for many of the most challenging problems in

computer science and many other fields.

The two most fundamental concerns of AI researchers are knowledge representation and

search. The first of these, which is also called Natural Language Processing (NLP),

Methods for applying
computers to problems

Computer
Science

Methods for applying
computers to problems that
require “intelligence”

Artificial
Intelligence

https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/John_McCarthy_%28computer_scientist%29

2

addresses the problem of capturing in a formal language. The second is a problem-solving

technique that systematically explores a space of problem states.

In this course you will learn the basics and applications of AI, including: Different types

of search techniques and natural language processing.

2. Overview of AI Application Areas

There are many areas of study in AI. We will try to list some of them:

 Game Playing

o Playing games using a well-defined set of rules such as checkers, chess

and 15-puzzel.

 Knowledge Representation and Automated Reasoning

o Representing information about the world in a form that a computer

system can utilize to solve complex tasks such as diagnosing a medical

condition, having a dialog in a natural language, intelligent assistants,

real-time problem solving and internet agents.

 Expert Systems

o A program that address the problem of reasoning with uncertain or

incomplete information, such as expert system for expert doctor or

engineer.

 Natural Language Processing

o information retrieval, summarization, understanding, generation, and

translation

 Vision

o Image analysis, Pattern recognition, and scene understanding.

 Robotics

o Grasping/manipulation, locomotion, motion planning, and mapping.

 Search and Optimization

o Planning, Airline scheduling, and resource allocation.

https://en.wikipedia.org/wiki/Natural_language

3

LOGIC REPRESENTATION

In order to determine appropriate actions to take to achieve goals, an intelligent system needs

to compactly represent information about the world and draw conclusions based on general

world knowledge and specific facts.

Propositional Logic

Propositional symbols are used to represent facts. Each symbol can mean what we want it to

be. Each fact can be either true or false. Propositional symbols: P, Q, etc. representing

specific facts about the world. For example,

P1 = “Water is a liquid”.

P2= “ Today is Monday”.

P3= “It is hot”

Q1= “The goround is wet”

Q2=”It is raining”

Propositions are combined with logical connectives to generate sentences with more complex

meaning. The connectives are:

 AND

 OR

 NOT

 Implies

 Mutual implication

For example : if Q2 then Q1 Q2 Q1

The truth tables for the connectives

p q p p q p q p q

T T F T T T

T F F F T F

F T T F T T

F F T F F T

Logic Representation

Propositional Logic

Predicate Logic

4

Predicate name Arguments

Logic Notes

 p (p) p

(p q) (p q)

 (p q) p q

 (p q) p q

p (q r) (p q) (p r)

p (q r) (p q) (p r)

p q q p

p q q p

(p q) r p (q r)

(p q) r p (q r)

p q p q

Predicate Logic

A predicate names a relationship between zero or more objects. Predicate logic allows us to

deal with the component of a sentence. For example,

P= “It rained on Tuesday”

Predicate representation: weather(tuesday, rain)

Q= “ Water is liquid”

Predicate representation: property(water, liquid)

For generality, predicate logic representation allows us to use variables, for example,

P1 = “It rained on Tuesday” weather(tuesday, rain)

P2= “It rained on Wednesday” weather(wedensday, rain)

P3= “It rained on Thursady” weather(thursday, rain)

 . .

 . .

 . .

P2= “It rained on Monday” weather(monday, rain)

5

It is more efficient to use variables in the representation format of the predicate.

weather(X, rain)

where X { Sunday, Monday, … , Saturady}

Constant: A constant refers to a specific object. A constant starts with a lower case letter.

Variable: A variable is used to refer to a general classes of ojects. A variable strats with an

upper case letter.

Clauses: A clause is one or more predicates combined using the connectives above. A clause

with one predicate is called a unite clause.

Horn Clause: A horn clause has the following form:

 b1() b2 () … bn () a()

where b1(), …, bn() and a() are all positive predicates. a() is called the head of the horn

clause. b1(), …, bn() is called the body of the horn clause. There are three cases of the horn

clause:

1- a() (horn clause has no body)

In this case the clause is called a Fact.

2- b1() b2 () … bn () (horn clause has no head)

In this case the clasue is considered as a set of Subgoals.

3- b1() b2 () … bn () a() (the standard form of the horn clause)

In this case the clasue is called a Rule.

Qualifications: Each variable must be associated with one of the two quantifiers (,)

depending on the meaning required

 for all [universal quantifier]

 there exist [existential quantifier]

There are some common identities:

 X p(X) X p(X)

 X p(X) X p(X)

 X p(X) Y p(Y)

 X p(X) Y p(Y)

6

Some examples of knowledge representation:

(1) If it does not rain tomorrow, Zeki will go to the lake.

 weather(tomorrow, rain) go (zeki, lake)

(2) All basketball players are tall.

 X [player(X) play (X, basketball) tall (X)]

(3) Some students like AI.

 X [student(X) like (X, ai)]

(4) Nobody like taxes.

 X like (X, taxes) OR X like (X, taxes)

Homework:

Convert the following sentences into their correponding predicate logic:

1- All vertebrates are animals.

2- Everyone in the purchasing department over 30 years is married.

3- There is a cub on top of every red cylinder.

4- Every city has a dogcatcher who has been bitten by every dog in town.

Reasoning with logic (Inference rule):

A reasoning or inference rule is a mechanism for producing new sentences from other

sentences. There many types of reasoning mechanisms. The most common mechanism is

called Resolution. Resolution is the process of choosing two clauses in normal form such that

one contains (p) predicate and the negation (p) of this predicate in the other clause. The

result is a clause called the resolvent which consists of the disjunction of all the predicates of

the two clauses except the predicate (p) and its negation (p). This procedure continues until

we reach to contradiction or no contradiction. A contradiction is obtained when the empty

clause is generated. If contradiction is reached, this means that a clause with its negative

cannot be true and considered with the other clauses that are involved in the same context,

and the clause should be true; otherwise, if no contradiction then the negative clause is

correct. Resolution mechanism has three main parts.

1- Unification

Unification is the process of making a set of predicates with the same name matches

7

each other exactly. Assume we have a set of predicates to be unified ,

we seek a substitution that matches these predicates ; where

 is replaced by term . Such that,

 where term is a variable, constant, or a function. For example,

 L1 = P(X, Y, b)

 L2 = P(Z, W, b)

 F={(X, Z), (Y, W)}

 Another example

 L1 = P(a, f(b), c)

 L2 = P(Z, W, b)

 F= {(a, Z), (f(b), W), ??} fail to unify

2- Skolemization

Skolemization is the process of eliminating existential quantifiers and their

corresponding variables. For example,

 X father(X, ali)

 father (zeki, ali)

 X Y father (Y, X)

 X father (f(X), X)

 Y X father (Y, X)

 X father (a, X)

3- Clause normal form

A predicate logic expression which is in its well formed formula (WFF) is in clause

normal form if it consists of a disjunction of predicates.

Steps to convert a WFF clause to a normal form clause:

==

 X { [p(X) q(X)] [r(X, a) Y (Z r(Y, Z) s(X, Y))] } X t(X)

 Step1: Eliminate by using the identity

 p q p q

 X { [p(X) q(X)] [r(X, a) Y (Z r(Y, Z) s(X, Y))] } X t(X)

8

Step 2: Reduce the scope of negation

 X { [p(X) q(X)] [r(X,a) Y (Z r(Y,Z) s(X,Y))] } X t(X)

Step 3: Standarize variables so that each quantifier uses a different variable

 X { [p(X) q(X)] [r(X,a) Y (Z r(Y,Z) s(X,Y))] } W t(W)

Step 4: Move all quantifiers to the left without changing the order

 X Y Z W { [p(X) q(X)] [r(X,a) (r(Y, Z) s(X, Y))] } t(W)

Step 5: Skolemization

 X Z W { [p(X) q(X)] [r(X, a) (r(f(X), Z) s(X, f(X)))] }

t(W)

Step 6: Drop all quantifiers

{ [p(X) q(X)] [r(X, a) (r(t(X), Z) s(X, f(X)))] } t(W)

Step 7: Convert the expression into a conjunction of disjunctions

 p (q r) (p q) (p r)

[[p(X) q(X)] r(X, a)] [[p(X) q(X)] (r(f(X), Z) s(X,

f(X)))]] t(W)

{ [[p(X) q(X)] r(X, a)] t(W) } { [[p(X) q(X)] (r(f(X), Z)

 s(X, f(X)))] t(W)

[p(X) q(X) r(X, a) t(W)] [p(X) q(X) r(f(X), Z) s(X, f(X))

 t(W)]

Step 8: Write each conjunction as a separate clause

 i) p(X) q(X) r(X, a) t(W)

 ii) p X q(X) r(f(X), Z) s(X, f(X)) t(W)

Step 9: Rename variables so that each clause assume a different set of variables

 i) p(X1) q(X1) r(X1, a) t(W1)

 ii) p(X2 q(X2) r(f(X2), Z) s(X2, f(X2)) t(W2)

9

Examples for resolution:

Example 1 : Given the following information “ Max is a dog” , “All dogs are

animals”, “All animals will die”; find out whether Max will die or no ? using

resolution method.

10

Example 2 : Consider the following story: “Anyone passing his history exams and

winning the lottery is happy. Anyone who studies or is lucky pass all his exams. Ali did

not study but he is lucky. Anyone who is lucky wins the lottery.” Answer the following

question using resolution method “ Who is happy ?”

11

STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH

Search is a universal problem-solving mechanism in AI. In AI problems, the sequence of

steps required to solve a problem are not known a priori, but often must be determined by a

systematic trial-and-error exploration of alternatives. There are three general classes of

problems that have been addressed by AI search algorithms: single-agent path finding

problems (e.g. 8-puzzle game), two-player games (e.g. tic-tac-toe), and constraint-satisfaction

problems (e.g. 8-queens puzzle).

1. Problem Space Model

A problem space is the environment in which a search takes place. A problem space

consists of a set of states of the problem, and a set of operators that change the states.

For example, in the 8-puzzle game (see Figure 1), the states are the different possible

permutation of the tiles, and the operators slide the tile into the empty position.

Figure 1: Single player 8-Puzzle game

12

2. Search Terminologies

 Problem Space − It is the environment in which the search takes place. (A set of

states and set of operators to change those states)

 Problem Instance − It is Initial state + Goal state.

 Problem Space Graph − It represents the problem space. States are shown by

nodes and operators are shown by edges.

 Depth of a problem − Length of the shortest path or the shortest sequence of

operators from initial state to goal state.

 Space Complexity − The maximum number of nodes that are stored in memory.

 Time Complexity − The maximum number of nodes that are created.

Figure 2: State space graph (Problem space graph)

3. Search Algorithms

 Systematic Search Algorithms

 Heuristic Search Algorithms

1- Systematic Search Algorithms

Determines the orders in which states are examined in the tree or graph, there are

many possibilities, such as depth-first search and breadth-first search algorithms.

 Depth-First-Search Algorithm

In depth first search, when a state is examined, all of its children and their

13

descendants are examined before any of its siblings (see Figure 3). Depth-first

search goes deeper into the search space whenever this is possible.

 Tracing and Returning a Path in Depth First Search

 Consider the following state space graph with Initial State: a and Goal State: j

Figure 3: Order of node generation for Depth-First-Search algorithm

Algorithm Depth-First-Search

 Begin

 Initialization: , , ,

 .

 While do

 Begin

- remove the first state from left of open, call it ;

- if is a goal then , break;

- generate all children of and put them in list ;

- put in ;

- eliminate from any states already in ;

- eliminate from any states already in ;

- append to the left of ;

- for each child in set ;

- empty

 End;

 If () compute the solution path;

 Else return fail;

 End.

https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCEQFjABahUKEwjk_ZG3tq7IAhVIlnIKHchICNU&url=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F12864004%2Ftracing-and-returning-a-path-in-depth-first-search&usg=AFQjCNGqqT98LbZa3cBPhJxqmKkBtOb5Kg&sig2=xCVMX1rb4jK3rkaCqn7uuA&bvm=bv.104317490,d.bGg

14

 #0 , , database

 #1 parent[a] = ’null’

 not the goal parent[b] = a

 parent[c] = a

 parent[d] = b

 parent[e] = b

 parent[h] = d

 #2 parent[i] = e

 not the goal parent[j]= e

 #3

 not the goal

 #4

 not the goal

 #5

 not the goal

 #6

 not the goal

 #7

 the goal is found, stop the search

 The path is: a b e j

15

 Breadth-First-Search Algorithm

Breadth-first search expands nodes in order of their distance from the root,

generating one level of the tree at a time until a solution is found (see Figure 4). It is

most easily implemented by maintain a queue of nodes, initially containing just the

root, and always removing the node at the head of the queue, expanding it, and

adding its children to the end of the queue.

 Tracing and Returning a Path in Breadth-First-Search

 Consider the following state space graph with Initial State: a and Goal State: j

Figure 4: Order of node generation for Breadth-First-Search algorithm

Algorithm Breadth-First-Search

 Begin

 Initialization: , , ,

 .

 While do

 Begin

- remove the first state from left of open, call it ;

- if is a goal then , break;

- generate all children of and put them in list ;

- put in ;

- eliminate from any states already in or ;

- append to the right of ;

- for each child in set ;

- empty

 End;

 If () compute the solution path;

 Else return fail;

 End.

https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCEQFjABahUKEwjk_ZG3tq7IAhVIlnIKHchICNU&url=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F12864004%2Ftracing-and-returning-a-path-in-depth-first-search&usg=AFQjCNGqqT98LbZa3cBPhJxqmKkBtOb5Kg&sig2=xCVMX1rb4jK3rkaCqn7uuA&bvm=bv.104317490,d.bGg

16

 #0 , , database

 #1 parent[a] = ’null’

 not the goal parent[b] = a

 parent[c] = a

 parent[d] = b

 parent[e] = b

 parent[f] = c

 #2 parent[g] = c

 not the goal parent[h]= d

 parent[i]= e

 parent[j]= e

 parent[k]=f

 #3

 not the goal

 #4

 not the goal

 #5

 not the goal

 #6

 not the goal

 #7

 not the goal

17

 #8

 not the goal

 #9

 not the goal

 #10

 the goal is found, stop the search

 The path is : a b e j

Homework:

Draw the problem space graph of the following 8-puzzel game, and then find the path using

Depth-first-search and Breadth-first- search algorithms.

 Initial State Goal State

 Game operations: Move the blank tile to (up, down, left, right)

Comparison between depth- and breadth- first search algorithms:

Depth-first search gets quickly into a deep search space. If it is known that the solution path

will be long, depth-first search won't waste time searching a large number of "shallow" states

in the graph. On the other hand, depth-first search can get "lost" deep in a graph, missing

shorter paths to a goal or even becoming stuck in an infinitely long path that does not lead to

a goal. Depth-first search is much more efficient for searching spaces with many branches

1 4 3

7 8 6

 5 2

1 4 3

7 6

5 8 2

18

since it does not have to keep all the nodes at a given level on the memory “open list”, so it

requires less memory space. Unlike breadth-first search, a depth first search does not

guarantee to find the shortest path to a state the first time it is encountered. Whereas, breadth-

first search always finds the shortest path to a goal node. Breadth-first search will not get

trapped into along unfruitful path.

2- Heuristic Search Algorithms

 All of the search methods in the preceding section are uninformed in that they did not take

into account the goal. They do not use any information about where they are trying to get to

unless they happen to stumble on a goal. One form of heuristic information about which

nodes seem the most promising is a heuristic function , which takes a node and returns

a non-negative real number that is an estimate of the path cost from node to a goal node.

The heuristic function is a way to inform the search about the direction to a goal. It provides

an informed way to guess which neighbor of a node will lead to a goal. There is no general

theory for finding heuristics, because every problem is different.

Another way to measure the cost from the start state to the goal state is the evaluation

function (cost function). Cost function can be measured as,

where

 is the heuristic function that estimates the distance between

 node and a goal node.

 is the (known) distance from the start state to a goal node .

 gives you the (partially estimated) distance from the start node

 to a goal node .

We will consider two types of heuristic algorithms: Heuristic search algorithms (with no cost

function) and heuristic search algorithm (with cost function).

19

 Heuristic Search Algorithms (with no cost function)

- Hill Climbing Algorithm

- Best – First Search Algorithm

 - Hill Climbing Algorithm

Hill climbing (HC) algorithm is a technique for certain classes of optimization problems.

The idea is to start with a sub-optimal solution to a problem (i.e., start at the base of a hill)

and then repeatedly improve the solution (walk up the hill) until some condition is

maximized (the top of the hill is reached).

Tracing and Returning a Path in Hill-Climbing Algorithm

Consider the following state space graph in Figure 4 with Initial State: A and Goal State:

M. Find the path using Hill-Climbing algorithm.

Hill Climbing Algorithm

Begin

 , , ,

 While () do

 Begin

- Add to ;

- If () then return (), break; /* reached */

- Empty ;

- Generate all possible children of and put them in ;

- If then ; /* dead end */

Else Let

For each state in do begin

 - Compute the heuristic value of ,

 - If is better than then ;

 EndFor

If is better than then

Else /* local optima */

 EndIF

 EndWhile

 Return (Fail)

End.

https://www.google.iq/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0CCEQFjABahUKEwjk_ZG3tq7IAhVIlnIKHchICNU&url=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F12864004%2Ftracing-and-returning-a-path-in-depth-first-search&usg=AFQjCNGqqT98LbZa3cBPhJxqmKkBtOb5Kg&sig2=xCVMX1rb4jK3rkaCqn7uuA&bvm=bv.104317490,d.bGg

20

Figure 4: State space graph with heuristic values

#0 , , ,

#1

#2

#3

#4

A100

B38

C33

D30

E42

F15

G25 H32

I10

K20

J8

N11 M5 L3

21

#5

#6

 Stop

Path: A D G F J M

Hill Climbing: Disadvantages

1- Local maximum

A state that is better than all of its neighbors, but not better than some other states far

away.

2- Plateau

A flat area of the search space in which all neighboring states have the same value.

3- Ridge

The orientation of the high region, compared to the set of available moves, makes it

impossible to climb up.

22

Ways Out

 For Local maximum problem, backtrack to some earlier node and try going in a different

direction.

 For Plateau problem, make a big jump to try to get in a new section.

 For Ridge, moving in several directions at once.

Implementation of Heuristic Evaluation Function:

We now evaluate the performance of several different heuristics for solving the 8-puzzel.

The simplest heuristic is to count the tiles out of place in each state when it is compared with

the goal. This is intuitively appealing, since it would seem that, all else being equal, the state

had fewest tiles out of place is probably closer to the desired goal and would be the best to

examine next.

 However, this heuristic does not use all of the information available in a board configuration;

since it does not take into account the distance the tiles must be moved. A "better" heuristic

would sum all the distances by which the tiles are out of place, one for each square a tile must

be moved to reach its position in the goal state, Table 2 shows the result of applying each of

these two heuristics to the three children states with comparison to a goal state.

Table 2: Different cases of calculating the heuristic function in the 8-puzzle game

State Goal state Tiles out of place Sum of distances

out of place

2 8 3

1 6 4

 7 5

1 2 3

8 4

7 6 5

5

6

2 8 3

1 4

7 6 5

1 2 3

8 4

7 6 5

3

4

23

2 8 3

1 6 4

7 5

1 2 3

8 4

7 6 5

5

6

- Best-First Search Algorithm

Best first search simply chooses the unvisited node with the best heuristic value to visit

next. It can be implemented in the same algorithm as lowest-cost Breadth First Search.

This time the priority of each node added to the queue as its heuristic value.

Algorithm Best-First Search (with no cost)

Begin

Initialization: ; ; ;

 While () and () Do

 Begin

- Reordered the ;

- Remove the first element from the left of open, call it ;

- If is the goal then

 Else

 Begin

 - Generate all children of and put them in ;

 - Remove from open and put it in ;

 - For each child Do

 - If is not already in or then

 Begin

 - Compute ;

 - ;

 - Insert in ;

 End

 Else remove from ;

 EndFor

 - Reordered open;

 Endif

Endwile

If then output failure

Else

Trace the list from to the start node to form the path;

End.

24

Tracing and Returning a Path in Best-First Search Algorithm

Consider the following state space graph in Figure 5 with Initial State: A and Goal State:

M. Find the path using Best-First search algorithm.

 Figure 5: State space graph with heuristic values

#0 , ,

#1

#2

A100

B25

C33

D30

E35

F38

G37 H32

I20

K15

J8

N11 M5 L3

25

#3

#4

#5

#6

#7

#8

#9

 The Path is: A B E I M

26

 Heuristic Search Algorithms (with cost function)

- A* Algorithm (Best-First Search Algorithm with cost).

Algorithm Best-first search (with cost function)

Begin

- Initialization: , , , ,

 ;

- While () and () Do

 Begin

- Remove the best element from and call it X;

- If is the goal then ;

 Else

 Begin

 - Generate the children of ;

 - Remove from and put it in ;

 - For each child of Do

 Begin

 - If (∉) and (∉) then

 Begin

 - ;

 - ;

 - ;

 - Insert in ;

 End if

 Else /* in or */

 Begin

 - ;

 - If then

 Begin

 - ;

 - ;

 - ;

 - If is in then insert in and remove it from

 End if

 End else

 End else

 End while

 - If found is false then output "failure";

 Else

 Trace pointer in fields to construct the path;

End.

27

Tracing and Returning a Path in A* Algorithm

Consider the following state space graph in Figure 6 with Initial State: A and Goal State:

M. Find the path using A* algorithm.

 7 14

 9

 12 8 15

 25

 14 8 10

 9

 13 18 20

 10 8 14 6

 Figure 6: State space graph with heuristic and cost values

#0 Initialization: , ,

#1

A100

B38

C33

D35

E22

F15

G25 H32

I40

K20

J8

N8 M5 L3

28

#2

#3

#4

 (* change the current value of in and database *)

#5

 (* ignore *)

#6

29

 #7

 (* remove from and put it in , then change the database *)

#8

 (* ignore *)

 (* change the current value of in , then change the database *)

#9

 (* ignore *)

#10

#11

30

#12

#13

The Path is: A100 D49 G47 F45 J56 M67

(* To reach the shortest path we must continue search the state space *)

Table 1: Database Table

State

A Null 100 0 100

B A 38 7 45

C A 33 9 42

D A 35 14 49

F C E G 15 34 33 30 49 48 45

E B 22 19 41

I E 40 28 68

J F 8 51 48 59 56

G D 25 22 47

H D 32 29 61

K G 20 32 52

M J 5 62 67

N J 8 54 62

#14

31

#15

#16

The Path is: A100 B45 E41 I68 M41

32

References

1- Artificial Intelligence: Structures and Strategies for Complex Problem Solving. George

F. Lugar. 2008

2- Artificial Intelligence. Elain Rich and Kevin Knight. 1991.

3- Logic-Based Artificial Intelligence. Jack Minker. 2000.

