The radiological effects of dust storms in Baghdad-Ramadi area

K. K. Ali¹*, S. J. D Shejiri²

¹ Department of Geology, College of Science, University of Baghdad, Baghdad, Iraq
² College of Engineering, Al-Farabi University, Baghdad, Iraq

Abstract

Twelve storm dust samples were collected from three cities in Iraq. The samples were collected in the same time during big storms which hit Iraq in summer, 2012 and 2013. The deposited dust on 4 by 4 nylon sheet on surfaces of selected buildings in cities of Baghdad, Fallujah and Al-Ramadi were collected. Each sample was put in sealed Marinilli beaker and kept for 4 weeks to reach the equilibrium state between radium and its short half-life daughters. Gamma spectrometry system based on HPGe was used for analysis of natural and artificial radionuclides in the dust. The activities of natural radionuclides were found to be ranged between 13-19 Bq/kg, 9-14 Bq/kg and 200-240 Bq/kg for Ra-226, Th-232 and K-40 respectively, while Cs-137 was found in all the samples to be ranged between 3-10 Bq/kg. The current study includes the estimation of doses caused by external and internal exposure and inhalation dose of these radionuclides and discusses the potential sources of these relatively elevated concentrations of radionuclides.

Keywords: dust, storms, radionuclides, dose, Iraq.
Introduction

The radionuclides are included in dust particles as unattached clusters and as aerosol-attached clusters with different particles size from fraction of a micron to several hundreds of microns [1] and of different origin: cosmogenic, decay product and artificially products produced due to nuclear weapons tests, reactors accident and mining works [1,2]. Many researchers have investigated the origin of long range transported dust particles using radionuclides as tracers [3-5] and recognized that main source of these radionuclides are due to the global nuclear weapon test [6].

Saharan dust and Asian dust contribute of the largest part of the annual global dust which estimated to be 1000 to 3000 Tgy\(^{-1}\)[7-8]. These Aeolian dust have been found to be of significant influence in human health [9-12].

Iraqi surface soil has been contaminated by global fallout and nuclear accidents, e.g. Chernobyl, especially at the northern and the western parts of Iraq [13-14].

The concentration of Cs-137 in surface soil in Iraq was estimated to be ranged between below detection limits to 175 Bq/kg dry soils [15]. Furthermore desertification has increased the frequency of dust storms [16], which also would be expected to lead to increase \(^{137}\)Cs deposition in Iraq.

The current study, attempts to investigate the radionuclides and their radiological effect in the dust storms which hit Iraq during summer season, 2012-2013.

Study area and literatures review

The study area (Ramadi, Fallujah and Baghdad) is located within the Western Desert and alluvial Plain, according to the four main geographic regions of Iraq (Figure-1). The desert is almost dry expecting few rainy days within winter, its soil consists mainly of fine sand and gypsum which lead to presence some sand dunes in this region [17]. While Baghdad region represents alluvial plain. Its surface soil consists mainly of clay deposits derived from the Tigris River and the Euphrates River.

Dust storms count among the most common natural hazards in Iraq. Dust-plumes cover sky of Iraq many times every year during summer’s months coming from W-North, West and South-West of Iraq. The biggest storms occurred in July, 4, 2009, April, 16, 2009, June , 2 and 30,2011, June ,2 and April, 19, 2012 and on March, 23, 2013. Plate-1 represents NASA’s satellite images for a dust plumes extending roughly north-south throughout Iraq [18].

Studied of dust storm in Iraq concluded that dust storms and dusty days could be reached up to 300 events/year within the next 10 years [19] neighboring countries are involved in these increasing numbers of dust storms[20-22]. Mohammed and Alomari [17] concluded that in Baghdad area, the greater effect on the occurrence of dust storms are dryness and wind speed. So in addition to the wind speeds which mostly exceed 4 m/s in the area, the condition and direction of the dominant wind are effective factors that determine the source of the storms.

Figure 1- physiographic map of Iraq
In Iraq, dust and sand storms occur when two seasonal wind, the sub-tropical jet stream and a polar front jet stream are combined and create more dynamic weather, especially the strong northwesterly “shimal” winds [23]. Mohammed and Alomari [17] identified dust sources by using satellites images (Aqua and Terra). They tracked a dust storm dated 17-18 June/2009 and they observed that an indication of Al-shimal wind effect. They believe that the main source of dust storms in Iraq is from Al-Jezirah part of Iraq in addition to Jordan, Syrian Desert.

Plate 1 NASA’s satellite image for a dust plume hit Iraq (a) in March, 23, 2013. (b) April, 19, 2012

Meteorological data of Iraq

Arid and semi-arid climate is predominant in most parts of Iraq, especially in the western and south western of Iraq. The amount average of precipitation is about (147 mm), with wind speed ranging from (2.4-4 m/sec). Winds blow over Iraq in two main directions; predominant direction is W and NW almost hot and dry in summer the other is southern and southeasterly wind called [24]. The climate is influenced by subtropical aridity of Arabian Desert area and the subtropical humidity of Arabian Gulf. Temperatures range from 5°C in January to more than 35°C in August. 70% of the rainfall in the country falls between November and March.

Materials and methods:

Sampling and measurement of radionuclides

Twelve dust samples were collected for the period February, 2012 to September, 2013. The deposited dust on 4 by 4 nylon sheet on surfaces of selected buildings in cities of Baghdad, Fallujah and Al-Ramadi were collected. Five samples collected from the city of Ramadi, 2 samples from the city of Fallujah and 5 samples from Baghdad. 500 to 1000 g of each sample was put in Marinilli beaker. To reach the equilibrium between radium and its short half-life daughters the samples were kept sealed for four weeks before analysis using Gamma spectrometry system based on HPGe. Concentration in Bq/kg of Radium-226, Th-232, K-40 and Cesium-137 were measured in all samples. The specific activities at 295.2 keV and 351.9 keV from 214Pb and at 609.3 keV and 1764.5 keV from 214Bi were used to determine the specific activity of 226Ra while the gamma-ray lines of 338.4 keV, and 911.2 keV from 213Ac, the 727.3 keV from 212Bi and 583.2 keV and 2614.5 KeV from 208Tl were used to determine the specific activity of 232Th. The specific activity of 40K was measured directly by its own gamma-ray line at 1460.8 keV and the energy gamma line of 662.2 KeV of 137Cs is used for measuring the specific activity of Cs-137. The energy calibration and efficiency was calibrated by using a standard source of a multi energy made by the American Canberra Company. The Marinilli geometrical shape was used to measure the activity of the samples
Dose assessment:

Inhalation dose

The dose (Sv/year) due to inhalation of the dust in current study is calculated using the following equation:

\[\text{Committed effective dose (Sv/y)} = \text{C} \times \text{F} \times \text{R} \]

\[\text{D (nGy/h)} = 0.462\text{C} + 0.604\text{C}_{\text{Th}} + 0.0417\text{C}_{\text{K}} \]

Where D is the committed equivalent doses (Sv/year), C is concentration of the nuclides in the dust (Bq/m³), F is inhalation dose conversion factor (Sv/Bq) published by IAEA and ICRP[25-28] (3.6 x 10⁷, 1.1 x 10⁷, 2.1 x 10⁷, and 4.6 x 10⁷ for 226Ra, 232Th, 40K and 137Cs, respectively) and R is, breathing rate assumed to be 10512 (m³/y), according to assumption that breathing rate for an adult is 0.02 m³/s [25,27, 28].

The maximum average concentration of particles in dust in Iraq was recorded to be 2241.1 μg/m³ air [29]. This value was used in the current study to convert the concentration of the radionuclides in units of Bq/kg dust to the concentration of the radionuclides in the dust in Bq/m³ air.

Absorbed dose rate

The absorbed dose rate is calculated by converting the natural radionuclides concentration, 226Ra, 232Th and 40K in the dust samples using the conversion factor given by UNSCEAR[30] as in the following equation:

\[\text{D (nGy/h)} = 0.462\text{C}_{\text{U}} + 0.604\text{C}_{\text{Th}} + 0.0417\text{C}_{\text{K}} \]

Where D is the absorbed dose rate in nGy/h and \(\text{C}_{\text{U}}, \text{C}_{\text{Th}}, \text{and} \text{C}_{\text{K}} \) are the measured concentration of U, Th and K respectively.

Results and discussion

Activity concentrations of 226Ra, 232Th and 40K and 137Cs and inhalation doses

The activity concentration in Bq/kg of 226Ra, 232Th, 40K and 137Cs radionuclides in the dust storms samples of the current study were represented in Table-1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>concentration of radionuclides (Bq/kg) in storms dust in Iraq and the committed equivalent doses (Sv/y) caused by inhalation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample</td>
<td>Sampling Location</td>
</tr>
<tr>
<td>ID</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Baghdad</td>
</tr>
<tr>
<td>2</td>
<td>Baghdad</td>
</tr>
<tr>
<td>3</td>
<td>Baghdad</td>
</tr>
<tr>
<td>4</td>
<td>Baghdad</td>
</tr>
<tr>
<td>5</td>
<td>Baghdad</td>
</tr>
<tr>
<td>6</td>
<td>Ramadi</td>
</tr>
<tr>
<td>7</td>
<td>Ramadi</td>
</tr>
<tr>
<td>8</td>
<td>Ramadi</td>
</tr>
<tr>
<td>9</td>
<td>Ramadi</td>
</tr>
<tr>
<td>10</td>
<td>Ramadi</td>
</tr>
<tr>
<td>11</td>
<td>Fallujah</td>
</tr>
<tr>
<td>12</td>
<td>Fallujah</td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td></td>
</tr>
</tbody>
</table>
The radium-226 activities (or 238U activities for the samples assumed to be in radioactive equilibrium) range from 13 Bq/kg to 19 Bq/kg with an average of 16.2 ±2.1 (Bq/kg). The activities of 232Th range from 9 Bq/kg to 14 Bq/kg with an average of 11.9 ± 1.8 (Bq/kg), the activity concentration of 40K ranges from 200 (Bq/kg) to 240 Bq/kg with an average of 218.3 ± 13.5 Bq/kg. Finally the concentrations range of 137Cs is 3 Bq/kg to 10 Bq/kg with average 6.8 ± 2.3 Bq/kg. These results are comparable with those reported by Ali et al. [31] for Iraqi soil and within the activity range of 137Cs in the surface soil in Iraq [15]. The activity concentration of 137Cs in surface soil, of middle and western Iraq, ranges between 7-175 Bq/kg [15]. Also the results are comparable with the results measured by Al-Hamidawi[32] in Najaf, western Iraq (226Ra :21.5, 232Th :5.4 and for 40K: 308) Bq/Kg and with those obtained by Al-harbi and El-Taher [33] in Qassim, middle of Saudi Arabia (10, 8, 306)Bq/kg for 226Ra, 232Th and 40K, respectively.

Committed equivalent doses (Sv/y) caused by inhalation of those radionuclides were tabulated in Table-1.

The maximum effective dose by inhalation of individual radionuclide was caused by the Ra-226 (4.83E-05 Sv/y) while the total effective dose caused by inhalation of all radionuclides (226Ra, 232Th, 40K and 137Cs) that measured in the dust was 1.02E-05 Sv/y. These values just represent very small fraction from the recommended effective dose (1 mSv/y) to public from inhalation of radionuclides from all sources of radiation [34].

Absorbed dose rate

Absorbed dose rate was estimated to be ranged from 20.84 nGy/h to 26.95 nGy/h with average of 23.7±1.9 nGy/h(Table-2). The radionuclides concentration in the dust causes an additional dose (23.7±1.9 nGy/h) to that the dose due to the exposure to the ambient gamma rays from the natural occurring radionuclides in the surface soil at the sampling location. For comparison, the range of absorbed dose rate due to the natural radionuclides in surface soil of the western part of Iraq is (5-299) nGy/h [7].

Table 2 calculated absorbed dose, and the Ra$_{eq}$ in the dust in the current study.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Absorbed dose D(nGy/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21.32</td>
</tr>
<tr>
<td>2</td>
<td>22.63</td>
</tr>
<tr>
<td>3</td>
<td>22.76</td>
</tr>
<tr>
<td>4</td>
<td>23.26</td>
</tr>
<tr>
<td>5</td>
<td>23.46</td>
</tr>
<tr>
<td>6</td>
<td>24.60</td>
</tr>
<tr>
<td>7</td>
<td>26.95</td>
</tr>
<tr>
<td>8</td>
<td>26.87</td>
</tr>
<tr>
<td>9</td>
<td>23.12</td>
</tr>
<tr>
<td>10</td>
<td>20.84</td>
</tr>
<tr>
<td>11</td>
<td>25.12</td>
</tr>
<tr>
<td>12</td>
<td>23.98</td>
</tr>
<tr>
<td>Min</td>
<td>20.84</td>
</tr>
<tr>
<td>Max.</td>
<td>26.95</td>
</tr>
<tr>
<td>Average</td>
<td>23.74</td>
</tr>
<tr>
<td>SD</td>
<td>1.90</td>
</tr>
</tbody>
</table>
Concentration of cesium

In previous studies, concentration of cesium in the surface soil in the study area was found to be ranged between below detection limit (BDL about 0.5 Bq/kg) to 20 Bq/kg [15] (Figure-2) or between 0.5 to 14.5 Bq/kg [35]. In this study, the concentration of cesium in dust storm samples was found to be ranged between 2.3 to 10 Bq/kg. Concentrations of Cs-137 in the air (Bq/m³) due to resuspension from the soil in the study area (Table-1) were estimated using the resuspension factor for cesium in normal conditions 10^{-6} m⁻¹ [36]. The values were found to be ranged between $1.15x10^{-5} - 3.34x10^{-4}$ Bq/m³ air. The concentrations of cesium which were measured in the dust storms’ samples in the current study range between $6.72x10^{-3} - 2.241x10^{-2}$ Bq/m³ air. It is clearly notes that in dust storm conditions, concentration of cesium is hundred folds more than that in normal condition caused due to resuspension. Moreover, the minimum measured concentration of cesium in dust storm samples was 2.3 Bq/kg which is more than that in soil surface (BDL) in study area. These values indicate that the sources of cesium, consequently, the sources of dust storms are from surrounding areas such as western parts of Iraq and Al-Jazerah which have more concentration of cesium in their soil surface 175 Bg/kg as appear in Figure-2 [15]. Also, it is easy to notes that the study area located in downwind of the prevailing wind direction in Iraq (Figure-3). This conclusion corresponding with the conclusion by Mohammed and Alomari [17] who believe that the main source of dust storms in Iraq is from Al-Jezirah part of Iraq in addition to Jordan and Syrian Desert.

![Figure 2](image2.png)

Figure 2- Cesium distribution in the surface soil in Iraq[16].

![Figure 3](image3.png)

Figure 3- Wind rose for Baghdad city, Iraq for May to June 2010 [37].
Conclusion:
The dust storm is considered as one of natural sources which effects on the humans and environment. Current study has estimated the radiological effects of some dust storms in Iraq. The concentration of natural occurring radionuclides such as radium, thorium and potassium in addition to the artificial radionuclide, cesium were found to be comparable to that in surface soil in the study area and other areas in Iraq. Those radionuclides caused an additional doses by inhalation estimated to be as maximum as 1.02E-05 Sv/y. These doses just represent very small fraction from the permissible value recommended by IAEA caused by background radiation. Also, concentration of these radionuclides in the dust causes an additional average dose rate about 23.7±1.9 nGy/h which is comparable to the absorbed dose rate due to the natural radionuclides in surface soil of the western part of Iraq. In present study we may conclude that it is reasonable to find measurable concentration of radionuclides in dust storms but its radiological effects may be insignificant. Also, this study concludes in simple way but not rigid that the sources of dust storm in study area are not far away from the study area and may be from the Western Desert of Iraq or Al-Jazerah region. The conclusion needs to be verified.

References

