Generalized-hollow lifting\(_g\) modules

Noor M. Mosa* , Wasan Khalid
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

Let \(R \) be any ring with identity, and let \(M \) be a unitary left \(R \)-module. A submodule \(K \) of \(M \) is called generalized coessential submodule of \(N \) in \(M \), if \((N)/K \subseteq \text{Rad}_g(M/K) \). A module \(M \) is called generalized hollow-lifting module, if every submodule \(N \) of \(M \) with \(M/N \) is a \(G \)-hollow module, has a generalized coessential submodule of \(N \) in \(M \) that is a direct summand of \(M \). In this paper, we study some properties of this type of modules.

Keywords: generalized coessential submodule, generalized strong supplement submodule, generalized hollow-lifting \(_g\) module.

1. Introduction

Throughout this paper \(R \) is a ring with identity, and every \(R \)-module is a unitary left \(R \)-module, \(N \subseteq M \) denotes \(N \) is a submodule of \(M \). Let \(M \) be an \(R \)-module, and let \(N \subseteq M \), \(N \) is called essential submodule of \(M \) (denoted by \(N \subseteq_e M \)) if every nonzero submodule \(B \) of \(M \), we have \(B \cap A \neq 0 \) [1]. A submodule \(N \) of \(M \) is called small submodule of \(M \) (denoted by \(N \ll M \)), if for every \(K \subseteq M \), \(M=N+K \) implies \(K=M \) [2]. \(\text{Rad}(M) \) is the sum of all small submodules of \(M \) [2]. A submodule \(N \) of \(M \) is called generalized small submodule of \(M \) (for short, \(G \)-small) (denoted by \(N \ll_G M \)), if for every \(K \subseteq_e M \), \(M= N+K \) implies \(K=M \) [3]. \(\text{Rad}_g(M) \) is the sum of all \(G \)-small of \(M \)[3]. It clear that \(\text{Rad}(M) \subseteq \text{Rad}_g(M) \), but the converse is not true in general. A nonzero module \(M \) is called generalized-hollow (for short, \(G \)-hollow), if every proper submodule of \(M \) \(G \)-small (in [4], it is denoted by \(e \)-hollow). A Submodule \(K \) of \(M \) is called coessential submodule of \(N \) in \(M \) (denoted by \(K \ll_e M \)), if \(N/K \ll M/K \). A module \(M \) is called lifting module or satisfies (D1) if for every submodule \(N \) of \(M \) there exists a direct summand \(K \) of \(M \) such that \(M = K \uplus K' \), \(K \subseteq N \), \(K' \subseteq M \) and \(N \cap K' \ll M \)[5]. \(M \) is called hollow lifting, if for every submodule \(N \) of \(M \) with \(M/N \)is hollow has a coessential submodule in \(M \) that is a direct summand of \(M \), [6]. Clearly every lifting module is hollow lifting , while the converse does not hold in general , see [6]. A submodule \(K \) of \(M \) is called \(G \)-

*Email: noor.mosa327@gmail.com
coessential submodule of N in M (denoted by $K \subseteq \text{Gce}N$), if $N/K \ll (G) M/K$,[7]. An R-module M is called generalized lifting or satisfies (GD1), if for every submodule N of M, there exists a direct summand K of M, such that $K \subseteq \text{Gce}N$ in M.[4]. It is clear that every lifting module is a generalized lifting module.

An R-module M is called a generalized hollow lifting module (for short, G-hollow lifting module), if for every submodule N of M, with M/N is hollow module, N has a generalized coessential submodule of M that is a direct summand of M. [7]

In this paper we introduce a generalized hollow lifting module as a generalization of generalized hollow lifting module.

Let N, $K \subseteq M$, N is called supplement of K in M if $M=N+K$ and $N \cap K \ll N$.[2] and N is called strong supplement of K if N is a supplement of K in M and $N \cap K$ is a direct summand of K.[3].

We introduce G-strong supplement submodule, let N, $K \subseteq M$ we called K is G-strong supplement of N in M if $M=N+K$, $N \cap K \subseteq \text{Rad}M$ and $N \cap K$ is a direct summand of N.

In fact, we prove for an indecomposable module M, M is G-hollow-lifting module if and only if M is G-hollow or else M has no G-hollow factor module. We also prove that for $N \subseteq M$, N has a generalized strong supplement in M if and only if N has a generalized coessential submodule that is a direct summand of M. therefore M is a G-hollow-lifting module if and only if for every submodule N of M, with M/N is G-hollow has a generalized strong supplement in M.

In section three, we prove that for fully invariant submodule of M, if M is G-hollow-lifting module, then M/N is a G-hollow-lifting module. In fact, we give sufficient condition for direct sum of two G-hollow lifting module to be G-hollow lifting. We prove if $M=M_1 \oplus M_2$ is a duo module, then M is a G-hollow-lifting module, if and only if M_1, and M_2 are G-hollow-lifting modules.

2. Some properties of G-hollow lifting modules

In this section, we introduce G-hollow lifting module as a generalization of hollow lifting module, and study some properties of this type of modules.

Definition 2.1[7]: A submodule K of M is called generalized coessential submodule of N in M denoted by

$$K \subseteq \text{Gce}N, \frac{N}{K} \subseteq \text{Rad}M \frac{K}{K}.$$

It is clear that, if K is coessential submodule of N in M, then K is generalized coessential submodule of N in M. However the converse in general is not true, for example $0 \subseteq Q$ as Z-module, but 0 is not coessential of Q.

Definition 2.2[4]: An R-module M is called generalized lifting or satisfies (GD1), if for every submodule N of M, there exists a direct summand K of M, such that $K \subseteq \text{Gce}N$ in M.

It is clear that every lifting module is a generalized lifting module. An R-module M is called hollow lifting, if every submodule N of M such that $K \subseteq N$-hollow has a coessential submodule that is a direct summand of M.[6].

It is known that $\text{Rad}(M) \subseteq \text{Rad}_g(M)$.[8].

The following gives the properties of $\text{Rad}_g(M)$ which appeared in [8].

Lemma 2.3: The following assertions are holds:

1. If M be an R-module, then $Rm \ll M$ for every $m \in \text{Rad}(M)$.
2. If $f:M \rightarrow N$ is an R-module homomorphism, then $f(\text{Rad}_g(M)) \subseteq \text{Rad}_g(N)$.
3. If $N \subseteq M$, then $\text{Rad}_g(N) \subseteq \text{Rad}_g(M)$.
4. If $K,L \subseteq M$, then $\text{Rad}_g(K)+\text{Rad}_g(L) \subseteq \text{Rad}_g(K+L)$.
5. If $K,L \subseteq M$, then $\text{Rad}_g(K+L) = \text{Rad}_g(K)+\text{Rad}_g(L)$.
6. If $M=\oplus_{i \in I} M_i$, then $\text{Rad}_g(M) = \oplus_{i \in I} \text{Rad}_g(M_i)$.

Lemma 2.4: Let N be a direct summand submodule of M. Then $\text{Rad}_g(N) = \text{Rad}_g(M) \cap N$.

Proof: See [8].

As a generalization of generalized of hollow lifting module we introduce the following:

Definition 2.5: An R-module M is called G-hollow lifting module, if for every submodule N of M with M/N is G-hollow has a G-coessential submodule in M that is a direct summand of M.

Examples and Remarks 2.6:
1- \(Z_4 \) as \(Z \)-module is G-hollow \(\text{lifting} _g \) module.

2- \(M=Z_{12} \) as \(Z \)-module is not G-hollow \(\text{lifting} _g \) module, since let \(N=\langle 2 \rangle \) and \(K=\langle 4 \rangle \) is a direct summand of \(M \).

Proposition 2.7: Let \(M \) be a G-hollow \(\text{lifting} _g \) module , then every submodule \(N \) of \(M \) such that \(\frac{M}{N} \) is G-hollow, can be written as \(N = K \bigoplus L \), where \(K \) is a direct summand of \(M \) and \(N \cap L \subseteq \text{Rad}_g(M) \).

Proof: Let \(N \subseteq M \), with \(\frac{M}{N} \) is G-hollow, since \(M \) is a G-hollow \(\text{lifting} _g \) module, then \(\exists K \subseteq M \), \(K \subseteq N \) and \(\frac{N}{K} \subseteq \text{Rad}_g\left(\frac{M}{K}\right) \), let \(L \subseteq M \) with \(M = K \bigoplus L \) then \(N = K \bigoplus (L \cap N) \). Now \(\frac{N}{K} = \frac{(K \bigoplus (L \cap N))}{K} = \frac{N \cap L}{K \cap (N \cap L)} \) Thus \(N \cap L \subseteq \text{Rad}_g\left(\frac{M}{K}\right) \) since \(K \) is a strong supplement submodule in \(M \).

Proposition 2.8: Let \(M_1 \) and \(M_2 \) be \(G \)-hollow modules, if \(M = M_1 \bigoplus M_2 \) then the following are equivalent:

1. \(M \) is G-hollow \(\text{lifting} _g \).
2. \(M \) is G-lifting.

Proof: \(1 \rightarrow 2 \) Let \(N \subseteq M \), let \(\pi_1 : M \rightarrow M_1 \) and \(\pi_2 : M \rightarrow M_2 \). If \(\pi_1 (N) \neq M_1 \) and \(\pi_1 (N) \neq M_2 \), then \(\pi_1 (N) = M_1 \) and \(\pi_2 (N) = M_2 \). Thus \(\pi_1 (N) \bigoplus \pi_2 (N) = M_1 \bigoplus M_2 \) [9].

Now let \(n \in N \), then \(n = m_1 + m_2 \), where \(m_1 \in M_1 \) and \(m_2 \in M_2 \). \(\pi_1 (n) = \pi_1 (m_1 + m_2) = m_1 \) and \(\pi_2 (n) = \pi_2 (m_1 + m_2) = m_2 \), thus \(n = \pi_1 (n) + \pi_2 (n) \) this implies that \(N \subseteq \pi_1 (N) \bigoplus \pi_2 (N) \) therefore \(N \subseteq M \). Assume that \(\pi_1 (N) = M_1 \) then \(M = M_1 + M_2 \), thus \(M/N = M_1 + M_2 \) and \(N \) is G-hollow, hence \(M = M_1 + M_2 \) is G-hollow, since \(M_1 + M_2 \) is G-hollow, therefore \(\exists K \subseteq M \) such that \(N \subseteq \text{Rad}_g(M) \), hence \(M \) is a generalized lifting.

Remark 2.9: It is clear that every module has no hollow factor module is a G-hollow \(\text{lifting} _g \) module . However, if \(M \) is indecomposable we have the following:

Proposition 2.10: Let \(M \) be an indecomposable module, then the following are equivalent:

1. \(M \) is G-hollow \(\text{lifting} _g \) module.
2. \(M \) is G-hollow or else \(M \) has no G-hollow factor module.

Proof: \(1 \rightarrow 2 \) Suppose that \(M \) has a G-hollow factor module, then \(\exists N \subseteq M \), such that \(\frac{M}{N} \) is G-hollow .

Since \(M \) is G-hollow \(\text{lifting} _g \) module., then \(\exists K \subseteq M \), \(K \subseteq M \) such that \(\frac{N}{K} \subseteq \text{Rad}_g(M) \). But \(M \) is indecomposable, then \(K = 0 \) and hence \(N \subseteq \text{Rad}_g(M) \).

\(2 \rightarrow 1 \) Clear.

Let \(R \) be any ring, and \(M \) is an \(R \)-module. Let \(N, K \) be two submodules of \(M, K \) is called strong supplement of \(N \) in \(M \), if \(K \) is a supplement of \(N \) in \(M \), and \(K \cap N \) is a direct summand of \(N \).[3]

As a generalization of strong supplement submodule, we introduce the following:

Definition 2.11: Let \(N, K \) be submodules of \(M \). \(K \) is called a generalized strong supplement of \(N \) (for short G-strong supplement of \(N \)), if \(M = N + K \) with \(K \cap N \subseteq \text{Rad}_g(K) \) and \(K \cap N \subseteq \text{Rad}_g(N) \).

It is clear that if \(K \) is strong supplement submodule in \(M \), then \(K \) is G-strong supplement submodule, but the converse in general is not true , for example: consider \(Z_{12} \) as \(Z \)-module , let \(N = \{ 0, 4, 8 \} \), it is clear that \(N \) is G-strong supplement since there exist a direct summand \(0 \) of \(M \), \(N \equiv G \), but \(N \) not small in \(M \).

Remark 2.12: In semisimple modules, every submodule is G-strong supplement.

Proposition 2.13: Let \(N \subseteq M \), then the following are equivalent:

1. \(N \) has a G-strong supplement in \(M \).
2. \(N \) has a G-coessential submodule that is a direct summand of \(M \).

Proof: \(1 \rightarrow 2 \) Let \(K \) be a G-strong supplement of \(N \) in \(M \), then \(M = N + K \), \(N \cap K \subseteq \text{Rad}_g(M) \) and \(N \cap K \subseteq \text{Rad}_g(N) \), hence \(N \subseteq N \cap K \) such that \((N \cap K) \bigoplus L = N \), then \(M = L \bigoplus K \). Now \(\frac{N}{L} = \frac{(N \cap K) \bigoplus L}{L} \subseteq \frac{\text{Rad}_g(M) \bigoplus L}{L} \subseteq \frac{\text{Rad}_g(M)}{L} \).
Let $N \subseteq M$ such that $M=K \oplus L$ and K is a direct summand of M, hence $M=K \oplus L$ for $L \subseteq M$. Thus $N=K \cap (N \cap L)$ and $N \cap L$ is a direct summand of N.

Now $N \subseteq \frac{K+(N \cap L)}{K} = \frac{(N \cap L)}{L} = N \cap L$.

But $N \subseteq \text{Rad}_g \left(\frac{M}{K} \right)$, hence $N \cap L \subseteq \text{Rad}_g \left(\frac{M}{K} \right)$. Thus N has a G-strong supplement in M.

Corollary 2.14: Let M be any R-module, then the following are equivalent:

1. M is a G-hollow lifting_g module.
2. Every submodule N of M, with M/\mathbb{N} is G-hollow, has a G-strong supplement in M.

Proposition 2.15: Let M be a G-hollow module, then the following are equivalent:

1. M is a G-hollow lifting_g module.
2. M is a G-lifting module.

Proof: $1 \rightarrow 2$ by [4], for any $N \subseteq M, \frac{M}{N}$ is G-hollow and by (1) M is G-lifting.

$2 \rightarrow 1$ Clear.

3. The direct sum of G-hollow lifting_g module

In this section we study the quotient and the direct sum of G-hollow lifting_g module, we prove under certain condition the quotient and the direct summand of G-hollow lifting_g module is G-hollow lifting_g module.

Remark 3.1: The quotient module of G-hollow lifting_g module needn’t be G-hollow lifting_g, the following example shows:

Example 3.2: Consider the Z-module $M = \frac{Z}{4Z} \oplus \frac{Z}{8Z}$, let $N = \frac{Z}{4Z} \oplus \frac{Z}{8Z} < 0$, clearly that M is G-hollow lifting_g module, since it is lifting but $\frac{M}{N}$ is not, since $\frac{M}{N} = \frac{\frac{Z}{4Z} \oplus \frac{Z}{8Z}}{\frac{Z}{4Z} \oplus \frac{Z}{8Z}} < 0$. Then $\frac{M}{N} = \frac{Z}{4Z} \oplus \frac{Z}{8Z}$ which is not G-hollow lifting_g.

Recall that a submodule N of M is called fully invariant if $f(N) \subseteq N$ for every $f \in \text{End}(M)$, and an R-module M is called duo module, if every submodule of M is fully invariant.[10].

Proposition 3.3: Let M be any R-module, if M is a G-hollow lifting_g module, then $\frac{M}{N}$ is a G-hollow lifting_g module, for every fully invariant submodule N of M.

Proof: Let N be a fully invariant submodule of M, and let $\frac{K}{N} \subseteq \frac{M}{N}$ such that $\frac{M}{N} \subseteq \frac{M}{K}$ is G-hollow.

Since M is G-hollow lifting_g, then $\exists L \subseteq \oplus M$, such that $L \subseteq K, \frac{K}{L} \subseteq \text{Rad}_g \left(\frac{M}{K} \right)$ and $M = K \oplus L$ for $K, L \subseteq M$, clearly $N \cap L \subseteq K$, then $\frac{L+N}{\mathbb{N}} \subseteq \frac{K}{N}$. Define $f: \frac{M}{L} \rightarrow \frac{M}{N+L}$ by $f(\frac{m+l}{N})=m+(L+N), \forall m \subseteq M$. It is clear that f is an epimorphism, $f(\frac{K}{L}) \subseteq \text{Rad}_g \left(\frac{M}{N+L} \right)$, hence $K+(L+N) \subseteq \frac{M}{N+L}$, hence $\frac{K}{N+L} \subseteq \text{Rad}_g \left(\frac{M}{N+L} \right)$.

Now $\frac{M}{N} \subseteq \frac{K_1+N}{N} \oplus \frac{L+N}{N}$, hence $L+N/\mathbb{N} \subseteq \frac{M}{N}$, thus $\frac{M}{N}$ is a G-hollow lifting_g module.

Corollary 3.4: The direct summand of duo G-hollow lifting_g module is again G-hollow lifting_g module.

Remark 3.5: The direct sum of two G-hollow lifting_g modules need not be a G-hollow lifting as the following example shows:

Example 3.6: The modules Z_4 and Z_3 as Z-module are G-hollow lifting_g modules.

While the module $Z_4 \oplus Z_3 \cong Z_{12}$ which is not G-hollow lifting_g module.

The following shows under certain condition the direct sum of two G-hollow lifting_g is again G-hollow lifting_g module.

Proposition 3.7: Let M be a G-hollow module such that $M = M_1 \oplus M_2$, if M_1 and M_2 are G-hollow lifting_g modules, then M is a G-hollow lifting_g module.
Proof: Let \(N \subseteq M \) with \(\frac{M}{N} \) is G-hollow, then \(N \cap M = (N \cap M_1) \oplus (N \cap M_2) \) by [9]. Hence \(\frac{M}{N} \)
\(= \frac{M_2 \oplus M_3}{(N \cap M_1) \oplus (N \cap M_2)} \cong \frac{M_1}{N \cap M_1} \oplus \frac{M_2}{N \cap M_2} \), thus \(\frac{M}{N} = \frac{M_2}{N \cap M_2} \) is G-hollow, and similarly \(\frac{M_3}{N \cap M_1} = \frac{M_2}{N \cap M_2} \) is G-hollow.

Since \(M_1 \) and \(M_2 \) are G-hollow lifting module, then \(\exists k_1 \in \oplus M_1 \) with \(k_1 \subseteq N \cap M_1 \) and \(\frac{N \cap M_1}{K} \subseteq \text{Rad}_g \left(\frac{M_1}{K_1} \right) \), \(M_1 = K_1 \oplus L_1 \), \(L_1 \subseteq M_1 \) and \(\exists K_2 \subseteq \oplus M_2 \) with \(K_2 \subseteq N \cap M_2 \) and \(\frac{N \cap M_2}{K_2} \subseteq \text{Rad}_g \left(\frac{M_2}{K_2} \right) \), \(M_2 = K_2 \oplus L_2 \), \(L_2 \subseteq M_2 \). Thus \(K_1 + K_2 \subseteq (N \cap M_1) + (N \cap M_2) = N \) and \(K_1 + K_2 \oplus L_1 + K_2 = M_1 \oplus M_2 = M \). Thus \(K_1 \oplus K_2 \subseteq \oplus M \).

Now \(\frac{N}{K_1 + K_2} = \frac{(N \cap M_1) \oplus (N \cap M_2)}{K_1 + K_2} \subseteq \text{Rad}_g \left(\frac{M_1}{K_1} \right) + \text{Rad}_g \left(\frac{M_2}{K_2} \right) \subseteq \text{Rad}_g \left(\frac{M}{K_1 + K_2} \right) \). Then \(K_1 + K_2 \subseteq \text{G-cot} N \), and hence \(M \) is G-hollow lifting module.

Corollary 3.8: let \(M = M_1 \oplus M_2 \oplus \ldots \oplus M_n \) be a duo module if \(\forall i = 1, 2, \ldots, n, M_i \) is a G-hollow lifting module, then \(M \) is M is a G-hollow lifting module.

References