Topologized Soft Fundamental Group of Soft Topological Group

Hiyam Hassan Kadhem1*, Noor Abdul Moneem Jawad2

1Department of Mathematics, Faculty of Education, University of Kufa, Najaf, Iraq
2Department of Mathematics, Faculty of Education for Girls, University of Kufa, Najaf, Iraq

Received: 13/6/ 2019 Accepted: 28/ 8/2019

Abstract
In this paper, we show that each soft topological group is a strong small soft loop transfer space at the identity element. This indicates that the soft quasitopological fundamental group of a soft connected and locally soft path connected space, is a soft topological group.

Keywords: fundamental group, locally path connected space, soft topological group, quasitopological fundamental group.

Introduction
The fundamental group awarded with the quotient topology is tempted by the natural surjective map
$$q : \Omega(X,x_0) \rightarrow \pi_1(X,x_0),$$
where $\Omega(X,x_0)$ is the loop space of (X,x_0) with compact-open topology, signified by $\pi_1^{top}(X,x_0)$ and becomes a quasitopo-logical group [1,2]. Torabi et al. [3] showed that the quasitopological fundamental group of a connected locally path connected, semi locally small generated space, is a topological group. Spanier [4] presented a different topology on the fundamental group which was called the whisker topology by Brodskiy et al. [5] and signified by $\pi_1^{wh}(X,x_0)$.

Hamed Torabi [6] presented that the quasitopological fundamental group of a connected locally path connected topological group is a topological group.

In this paper we will demonstrate that the soft quasitopological fundamental group of a soft connected locally soft path connected topological group is a soft topological group.

Definition 1.1:
Let (X,\mathcal{T}) is a soft topology and let V is an equivalent relationship on X when $q(x) = [x]$ then X/V is all soft equivalent classes, when $q: X \rightarrow X/V$ is a soft quotient function then $\overline{\mathcal{T}} = \{A \subseteq X/V : q^{-1}(A) \in \mathcal{T}\}$ is soft quotient topology and $(X/V,\overline{\mathcal{T}})$ is termed soft quotient topological space.

*Email: hiyamh.kadhim@uokufa.edu.iq
the soft fundamental group $\pi_1(X, x_0)$ with the soft quotient topology X/\mathcal{V} is signified by $\pi_1^{\text{sqtop}}(X, x_0)$.

Theorem 1.2.

Let (X, x) be a soft locally path connected soft pointed space and $\mathcal{V} = \{V_\alpha \mid \alpha \in \mathcal{P}(X, x)\}$ be a soft path open cover of (X, x). Then $\tilde{\pi}(\mathcal{V}, x)$ is a soft open subgroup of $\pi_1^{\text{sqtop}}(X, x_0)$.

Definition 1.3:

Let \tilde{X} is the soft space of soft homotopy classes of based soft paths in X. For any soft pointed topological space (X, x_0) the soft whisker topology on \tilde{X} is defined by the soft basis $B(\{\alpha\}, U) = \{[\alpha \ast \beta] \mid \beta \in \mathcal{U}\}$, where α is a soft path in X from x_0 to x_1, U is a soft neighborhood of x_1 in X, and β is a soft path in U originating at x_1, the soft path β is said to be a U-soft whisker. We represent \tilde{X} with the soft whisker topology by \tilde{X}_{swh}.

The soft fundamental group $\pi_1(X, x_0)$ with the soft subspace topology congenital from \tilde{X}_{swh} is signified by $\pi_1^{\text{swh}}(X, x_0)$.

Definition 1.4:

A soft topological space X is called a small soft loop transfer (SSLT for short) space at x if for each soft path α in X with $\alpha(0) = x_0$ and for each soft neighborhood U of x_0 there is a soft neighborhood V of $\alpha(1) = x$ such that for each soft loop β in V based at x there is a soft loop γ in U based at x_0 which is soft homotopic to $\alpha \ast \beta \ast \alpha^{-1}$ corresponding to I. The soft space X is called an SSLT space if X is SSLT at x_0 for each $x_0 \in X$.

Definition 1.5:

Let (X, x_0) be a soft locally path connected space and let $\mathcal{V} = \{V_\alpha \mid \alpha \in \mathcal{P}(X, x_0)\}$ be a soft path open cover of X by the soft neighborhoods V_α excluding $\alpha(1)$. Define $\tilde{\pi}(\mathcal{V}, x_0)$ as the subgroup of $\pi_1(X, x_0)$ involving of the soft homotopy classes of soft loops that can be represented by a product of the following form

$$\prod_{j=1}^{n} \alpha_j \beta_j \alpha_j^{-1}$$

where α_j are arbitrary soft path starting at x_0 and each β_j is a soft loop inside the soft open set V_{α_j}, for all $j \in \{1, 2, \ldots, n\}$. We call $\tilde{\pi}(\mathcal{V}, x_0)$ the soft path Spanier group of $\pi_1(X, x_0)$ with admiration to \mathcal{V}.

Proposition 1.6:

Let X is a soft topological space, then we say that X is SSLT at x_0 if and only if for each soft open neighborhood $U \subseteq X$ enclosing x_0 is found a soft path open cover \mathcal{V} of X at x such that $\tilde{\pi}(\mathcal{V}, x_0) \leq i_\ast \pi_1(U, x_0)$.

Proof:

Let U be a soft open neighborhood of X. As X is SSLT at x_0, for each soft path α from x_0 to $\alpha(1)$ there is a soft open neighborhood V_{α} of $\alpha(1)$ such that for each soft loop β in V_{α} based at $\alpha(1)$ we have $[\alpha \ast \beta \ast \alpha^{-1}] \in i_\ast \pi_1(U, x_0)$, where $i_\ast : \pi_1(U, x_0) \rightarrow \pi_1(X, x_0)$ is the homomorphism convinced by the soft inclusion map $i : U \rightarrow X$. Consider $\mathcal{V} = \{V_\alpha \mid \alpha \in \mathcal{P}(X, x_0)\}$. Hence each generator of $\tilde{\pi}(\mathcal{V}, x_0)$ goes to $i_\ast \pi_1(U, x_0)$ which indicates that $\tilde{\pi}(\mathcal{V}, x_0) \leq i_\ast \pi_1(U, x_0)$.

On the other hand, let α be a soft path from x_0 to $\alpha(1)$ and U be a soft open neighborhood enclosing x_0. By the definition of the soft path Spanier group, there is a $V_{\alpha} \in \mathcal{V}$ such that $[\alpha \ast \beta \ast \alpha^{-1}] \in \tilde{\pi}(\mathcal{V}, x_0)$ for each soft loop β in V_{α} based at $\alpha(1)$. Thus, by assumption, $[\alpha \ast \beta \ast \alpha^{-1}] \in i_\ast \pi_1(U, x_0)$ which indicates that α is an SSLT path. Therefore X is an SSLT space at x_0.

Corollary 1.7:

A soft topological space X is SSLT at x_0 if and only if for each soft open neighborhood $U \subseteq X$ enclosing x_0, $i_\ast \pi_1(U, x_0)$ is an open subgroup of $\pi_1^{\text{sqtop}}(X, x_0)$.

423
Theorem 1.8:

Let X be a soft connected locally path soft connected space, then X is SSLT at x_0 if and only if $\pi^\text{swth}_1(X, x_0) = \pi^\text{sttop}_1(X, x_0)$.

Proof:

Let X be SSLT at x_0. It is ample to expression that $\pi^\text{swth}_1(X, x_0)$ is bristlier than $\pi^\text{sttop}_1(X, x_0)$. Let the assortment $\{[\alpha] : i_n^1(U, x_0) \mid [\alpha] \in \pi_1(X, x_0)\}$ custom a basis for the soft whisker topology on $\pi_1(X, x_0)$. Thus, it be enough to verify that $[\alpha] \cdot i_n^1(U, x_0)$ is a soft open subset of $\pi^\text{sttop}_1(X, x_0)$, where U is a soft open neighborhood of x_0. Using Proposition 1.6, there is a soft path open cover V of X such that $\hat{U}(V, x_0) \leq i_n^1(U, x_0)$. Since $\hat{U}(V, x_0)$ is soft open in $\pi^\text{sttop}_1(X, x_0)$ (Theorem 1.2) and $\pi^\text{sttop}_1(X, x_0)$ is a soft quasitopological group, we imply that $[\alpha] \cdot i_n^1(U, x_0)$ is a soft open subset of $\pi^\text{sttop}_1(X, x_0)$.

On the other hand, assume $\pi^\text{swth}_1(X, x_0) = \pi^\text{sttop}_1(X, x_0)$. The subset $i_n^1(U, x_0)$ is a soft open basis in $\pi^\text{swth}_1(X, x_0)$. Then the subset $i_n^1(U, x_0)$ is soft open in $\pi^\text{sttop}_1(X, x_0)$. Therefore Corollary 2.4 indicates that X is SSLT at x_0.

Corollary 1.9:

For a soft connected and soft locally path soft connected space X, if X is SSLT at x_0, then $\pi^\text{sttop}_1(X, x_0)$ and $\pi^\text{swth}_1(X, x_0)$ are soft topological groups.

Note 1.10: [7]

if $\{f_\alpha : (X, T, E) \to (Y, S, F, E)\}$ is a family of soft continuous functions, then the soft function $\prod_{\alpha \in S} \times f_\alpha : \prod_{\alpha \in S} X_{\alpha} \times T, E \to \prod_{\alpha \in S} Y_{\alpha}, F, E$ is soft continuous.

2. Topologized soft fundamental group of soft topological group

Let G be a soft topological group and α be a soft path in G, then we denote the soft homotopy class α by $[\alpha]$ and the inverse of α by $\bar{\alpha}$ where $\bar{\alpha} : I \to G$ by $\bar{\alpha}(t) = \alpha(1-t)$. Also we define $\alpha^{-1} : I \to G$ by $\alpha^{-1}(t) = (\alpha(t))^{-1}$ and denote the constant soft path $\alpha : I \to G$ at $\alpha \in G$ by C_α.

Definition 2.1:

Let G be a soft topological group with the multiplication soft function $m : G \times G \to G$, given by $(x, y) \to xy$. Let α, β be two soft paths in G. We define the soft path $\alpha \cdot \beta : I \to G$ by $\alpha \cdot \beta(t) = m(\alpha(t), \beta(t))$. Since the multiplication soft function and α, β are soft continuous $\alpha \cdot \beta : I \to G$ is soft continuous (by Note 1.10).

Lemma 2.2:

If G is a soft topological group and λ, γ be two soft loops in G based at $a \in G$ and $b \in G$ respectively, then $[\lambda, \gamma] = [\lambda^a] \cdot [\gamma^b]$. In particular, if λ, γ be two soft loops in G based at the soft identity element e_G, then $[\lambda, \gamma] = [\lambda][\gamma]$.

Proof:

Consider the soft continuous multiplication function $m : G \times G \to G$, given by $(x, y) \to xy$. Let $\theta : \pi_1(G, a) \times \pi_1(G, b) \to \pi_1(G \times G, (a, b))$ be the soft isomorphism defined by $([\lambda], [\gamma]) \to ([\lambda], [\gamma])$. Since $m_\theta : \pi_1(G, a) \times \pi_1(G, b) \to \pi_1(G, ab)$ is a soft homomorphism and $([\lambda], [\gamma]) = ([\lambda], [\gamma])$, we have $m_\theta([\lambda], [\gamma]) = m_\theta([\lambda], [\gamma]) = m_\theta([\lambda], [\gamma])$. On the other hand $m_\theta([\lambda], [\gamma]) = [\lambda, \gamma]$, which indicates that $[\lambda^b][\gamma^c] = [\lambda, \gamma]$.

Definition 2.3:

A soft topological space X is said to be a strong small soft loop transfer (strong SSLT) space at x_0 if for each $x \in X$ and for each soft neighborhood U of x_0 there is a soft neighborhood V of x such that for each soft path α in X with $\alpha(0) = x_0, \alpha(1) = x$ and for each soft loop β in V based at x.
there is a soft loop y in U based at x_0 which is soft homotopic to $\alpha * \beta * \bar{\alpha}$ relative to I. The soft space X is said to be a strong SSLT space if X is strong SSLT at x_0 for each $x_0 \in X$.

Theorem 2.4:

A soft topological group G is a strong SSLT space at the identity element e_G.

Proof:

Let U be a soft neighborhood of e_G in G and $x \in G$. We show that for each soft loop β based at x in the soft neighborhood $xU = \{ xu | u \in U \}$ of x and each soft path α in G with $\alpha(0) = e_G$, $\alpha(1) = x$, there is a soft loop $\tilde{\alpha}$ in U based at e_G which is soft homotopic to $\alpha * \beta * \bar{\alpha}$ relative to I. For this let λ be a soft loop in G based at e_G such that

$$
\begin{cases}
\lambda(t) = \alpha(3t) & 0 \leq t \leq 1/3 \\
\alpha(3t - 2) & 2/3 \leq t \leq 1
\end{cases}
$$

Also let γ be a soft loop in G based at e_G such that

$$
\begin{cases}
\gamma(t) = e_G & 0 \leq t \leq 1/3 \\
\gamma(t) = e_G & 2/3 \leq t \leq 1
\end{cases}
$$

Therefore by Lemma 2.2 we have $[\lambda][\gamma] = [\lambda, \gamma]$. Note that

$$
(\lambda, \gamma)(t) = \begin{cases}
\alpha(3t) & 0 \leq t \leq 1/3 \\
\beta(3t - 1) & 1/3 \leq t \leq 2/3 \\
\alpha(3t - 2) & 2/3 \leq t \leq 1
\end{cases}
$$

If ξ is a soft loop in U based at e_G such that for each $t \in I$, $\gamma(t) = x^{-1}\beta(t)$ then we have $[\xi] = [\alpha * \bar{\alpha}][\xi] = [\lambda][\gamma] = [\lambda, \gamma] = [\alpha * \beta * \bar{\alpha}]$.

Hence G is a strong SSLT space at e_G.

Corollary 2.5:

Let G be a soft topological group. Then G is an SSLT space at the identity element e_G.

Corollary 2.6:

Let G be a soft connected and soft locally soft path connected soft topological group, then $\pi^{\text{soft}}_1(G, e_G) = \pi_{1, \text{swh}}(G, e_G)$ is a soft topological group.

Proof:

By corollary 2.5, G is an SSLT space at e_G. Therefore $\pi^{\text{soft}}_1(G, e_G) = \pi_{1, \text{swh}}(G, e_G)$ by Theorem 1.8. Hence $\pi^{\text{soft}}_1(G, e_G)$ and $\pi_{1, \text{swh}}(G, e_G)$ are soft topological group by Corollary 1.9.

Proposition 2.7:

Let G connected and locally soft path connected soft topological group and $H \leq \pi_1(G, e_G)$. Then the next statements are equivalent.

(i) H is a soft open subgroup of $\pi^{\text{soft}}_1(G, e_G)$.

(ii) H is a soft open subgroup of $\pi_{1, \text{swh}}(G, e_G)$.

(iii) There is a soft neighborhood U of e_G s.t. $i * \pi_1(U, e_G) \leq H$.

Proof. (i) \iff (ii) deduce from Corollary 2.6.

(ii) \implies (iii) : Let H be a soft open subgroup of $\pi_{1, \text{swh}}(G, e_G)$. Since $i * \pi_1(V, e_G)$ is a soft open basis in $\pi_{1, \text{swh}}(G, e_G)$, then there is a soft neighborhood U of e_G s.t. $i * \pi_1(U, e_G) \leq H$.

(iii) \implies (ii) : Let there is a soft neighborhood U of e_G s.t. $i * \pi_1(U, e_G) \leq H$. Since $i * \pi_1(U, e_G) \leq H$ is a soft open set in $\pi_{1, \text{swh}}(G, e_G)$ and $i * \pi_1(U, e_G) \leq H$ and $\pi_{1, \text{swh}}(G, e_G)$ is a soft topological group, Hence H is a soft open subgroup of $\pi_{1, \text{swh}}(G, e_G)$.

Definition 2.8:

Let $H \leq \pi_1(X, x_0)$. A soft topological space X is called an H-small soft loop transfer (H-SSLT) space at x_0 if for each soft path α in X with $\alpha(0) = x_0$ and for each soft neighborhood U of x_0 there is a soft neighborhood V of $\alpha(1) = x$ such that for each soft loop β in V based at x there is a soft loop γ in U based at x_0 such that $[\alpha * \beta * \bar{\alpha} * \bar{\gamma}] \in H$.

425
It is simple to see that each SSLT space at x is an H-SSLT space at x, for any soft subgroup H of $\pi_1(X,x_0)$, so each soft topological group G is a H-SSLT space at e_G, for any soft subgroup H of $\pi_1(G,e)$.

Theorem 2.9:

Let $H \leq \pi_1(X,x_0)$ and X be a H-SSLT at x_0. So X is soft homotopically path Hausdorff for H iff X is soft homotopically Hausdorff for H.

Lemma 2.10:

Let C be a subset of $\pi_1(X,x_0)$ and $C \neq \pi_1(X,x_0)$. W say that X is soft homotopically path-Hausdorff for C if C is closed in $\pi_1^{\text{qtop}}(X,x_0)$, and we say that C is closed in $\pi_1^\text{soft}(X,x_0)$, if X is soft homotopically path-Hausdorff for C and soft locally soft path connected.

Proposition 2.11:

Let G be a soft connected and soft locally soft path connected soft topological group and $H \leq \pi_1(G,e)$. So the next statements are equivalent.

(i) H is a soft closed subgroup of $\pi_1^{\text{qtop}}(G,e)$.

(ii) H is a soft closed subgroup of $\pi_1^{\text{soft}}(G,e)$.

(iii) G is soft homotopically Hausdorff for H.

(iv) G is soft homotopically soft path Hausdorff for H.

Proof:

(i) \iff (ii) deduce from corollary 2.6.

(iii) \iff (iv) deduce from Theorem 2.9, since G is an H-SSLT at e_G and $\pi_1(G,e_G)$ is abelian, so H is a soft normal subgroup of $\pi_1(G,e_G)$.

(iv) \iff (i) deduce from Lemma 2.10.

Corollary 2.12:

A soft connected locally soft path connected soft topological group G is a soft homotopically Hausdorff if and only if $\pi_1^{\text{qtop}}(G,e_G)$ is a soft Hausdorff space.

Proof:

Assume that G is a soft homotopically Hausdorff. So G is a soft homotopically Hausdorff relative to the soft trivial subgroup $H = \{1\}$. Hence by Proposition 2.11 $\{e_G\}$ is closed in $\pi_1^{\text{qtop}}(G,e_G)$. Therefore for each $g \in G$, $\{g\}$ is closed in $\pi_1^{\text{qtop}}(G,e_G)$ since $\pi_1^{\text{qtop}}(G,e_G)$ is a soft quasitopological group. Hence $\pi_1^{\text{qtop}}(G,e_G)$ is \mathcal{T}_G, which indicates that it is a soft Hausdorff space since $\pi_1^{\text{qtop}}(G,e_G)$ is a soft topological group. The converse is trivial.

Theorem 2.13:

A soft topological group G is a strong SSLT space if G is an abelian group or a soft path connected space.

Proof:

Let G be an abelian soft topological group and $a \in G$. We show that G is a strong SSLT space at a. For this let U be a soft neighborhood of a in G and $b \in G$. We show that for each soft loop β based at b in the soft neighborhood $bU = \{ba^{-1}u | u \in U\}$ of b and each soft path α in G with $\alpha(0) = a, \alpha(1) = b$, there is a soft loop γ in U based at a which is soft homotopic to $\alpha * \beta * a$ relative to I. Let λ be a soft loop in G based at a such that

$$\lambda(t) = \begin{cases}
\alpha(3t) & 0 \leq t \leq 1/3 \\
b & 1/3 \leq t \leq 2/3 \\
\alpha(3t-2) & 2/3 \leq t \leq 1
\end{cases}$$

Also let γ be a soft loop in G based at a such that

$$\gamma(t) = \begin{cases}
e_G & 0 \leq t \leq 1/3 \\
ab^{-1}\beta(3t-1) & 1/3 \leq t \leq 2/3 \\
e_G & 2/3 \leq t \leq 1
\end{cases}$$

Therefore by Lemma 2.2 we have $[\lambda]^a = [\alpha, \gamma]$. Note that...
Since G is abelian, hence $bab^{-1} = a, a^a = a$ and $\alpha a = \alpha a$. Therefore
\[
\lambda \gamma = ([a \lambda] * ([a \gamma]) = [a \lambda] [a \gamma] = [a \gamma] = [a (\alpha \beta * \alpha)].
\]
Since G is abelian, so $\lambda \gamma = [a \lambda] = [a \beta]$. Hence
\[
\lambda \gamma = ([a \lambda] * ([a \gamma]) = [a \lambda] [a \gamma] = [a \gamma] = [a (\alpha \beta * \alpha)].
\]
Therefore $\lambda \gamma = ([a \lambda] * ([a \gamma]) = [a \lambda] [a \gamma] = [a \gamma] = [a (\alpha \beta * \alpha)]$.

Now let G be a soft path connected soft topological group and $a \in G$. We show that G is a strong SSLT space at a. For this let U be a soft neighborhood of a in G and $b \in G$. We show that for each soft loop β based at b in the soft neighborhood $ba^{-1}U = \{ba^{-1}u | u \in U\}$ of b and each soft path α in G with $\alpha(0) = a, \alpha(1) = b$, there is a soft loop f in U based at a which is soft homotopic to $\alpha \beta * \alpha$ relative to I. Since G is soft path connected so there is a soft path γ in G from e_G to a. By proof of Theorem 2.4, we have
\[
\delta = [\delta] = [\alpha * \beta * \alpha * \beta] = [(g \alpha \beta * (g \alpha \beta)] = [(g \alpha \beta * (g \alpha \beta)] [b^{-1} \gamma] = [C_{b^{-1}}] [b^{-1} \beta]
\]
Also
\[
\gamma = (g \alpha \beta * (g \alpha \beta)] = [(g \alpha \beta * (g \alpha \beta)] [b^{-1} \gamma] = [C_{b^{-1}}] [b^{-1} \beta] = [b^{-1} \gamma].
\]
Therefore $[g \alpha \beta * (g \alpha \beta)] = [g \alpha \beta * (g \alpha \beta)] [b^{-1} \gamma]$, which indicates that $[\alpha \beta * \alpha] = [ab^{-1} \beta]$.

If $f = b^{-1} \beta$, then f is a soft loop in U based at a and $[\alpha \beta * \alpha] = [f]$. Hence G is a strong SSLT space at a.

Corollary 2.14:
A soft topological group G is an SSLT space if G is an abelian group or a soft path connected space.

Corollary 2.15:
Let G be a soft path connected topological group, then $\pi_{1}^{\text{wh}}(G, e_G)$ is a soft topological group.

Conclusion:
The study has reached that the soft quasitopological fundamental group of a soft connected and locally soft path connected space is a soft topological group.

References