T-Stable-extending Modules and Strongly T-stable Extending Modules

Inaam Mohammed Ali Hadi*1, Farhan Dakhil Shyaa2

1 Department of Mathematics, University of Baghdad, College of Education for Pure Sciences (Ibn-Al-Haitham), University Of Baghdad, Iraq
2 Department of Mathematics, University of Al-Qadisiyah, College of Education, Al-Qadisiya, Iraq

Received: 28/4/2019 Accepted: 28/8/2019

Abstract

In this paper we introduce the notions of t-stable extending and strongly t-stable extending modules. We investigate properties and characterizations of each of these concepts. It is shown that a direct sum of t-stable extending modules is t-stable extending while with certain conditions a direct sum of strongly t-stable extending is strongly t-stable extending. Also, it is proved that under certain condition, a stable submodule of t-stable extending (strongly t-stable extending) inherits the property.

Keywords: extending modules, S-extending module, t-stable extending modules, and strongly t-stable extending modules.

Introduction

Let \(R \) be a ring with unity and \(M \) be a right \(R \)-module. A submodule \(N \) of \(M \) is called essential in \(M \) (\(N \leq_{\text{ess}} M \)) if \(N \cap K = (0) \), \(K \leq M \) implies \(K = (0) \). A submodule \(N \) of \(M \) is called closed in \(M \) if it has no proper essential extension in \(M \), that means if \(N \leq_{\text{ess}} W \), where \(W \leq M \), then \(N = W \) [1], [2]. It is known that for any submodule \(N \) of \(M \), there exists a submodde \(H \) of \(M \), such that \(N \leq_{\text{ess}} H \), hence \(H \) is a closed submodule of \(M \), \(H \) is called a closure of \(N \) [3]. Asgari [4] introduced the notion of t-essential submodule, where a submodule \(N \) of \(M \) is called t-essential (denoted by \(N \leq_{\text{tes}} M \)) if whenever \(W \leq M \), \(N \cap W \leq Z_2(M) \) implies \(W \leq Z_2(M) \), where \(Z_2(M) \) is the second

*Email: innam1976@yahoo.com
singular submodule defined by \(Z \left(\frac{M}{Z(M)} \right) = \frac{Z_2(M)}{Z(M)} \) [1], where \(Z(M) = \{ x \in M : xI = 0 \} \) for some essential ideal of \(R \). Equivalently, \(Z(M) = \{ x \in M : ann(x) \leq ess R \} \) and \(ann(x) = \{ r \in R : xr = 0 \} \) for some t-essential ideal \(I \) of \(R \). \(M \) is called singular (nonsingular) if \(Z(M) = M(Z(M)) = 0 \). Note that \(Z_2(M) = \{ x \in M : xI = 0 \} \) for some t-essential ideal \(I \) of \(R \). \(M \) is called \(Z_2\)-torsion if \(Z_2(M) = M \). Asgari introduced the concept of t-closed submodule where a submodule \(N \) is called t-closed (\(\leq tc \)) if \(N \) has no proper t-essential extension in \(M \) [4]. It is clear that every t-closed submodule is closed, but the converse is not true. However, under the class of nonsingular, the two concepts are equivalent. Asgari [5] stated that for any submodule \(N \) of \(M \), there exists a t-closed submodule \(H \) of \(M \) such that \(N \leq ess H \). \(H \) is called a t-closure of \(N \). A module \(M \) is called extending if for every submodule \(N \) of \(M \) there exists a direct summand \(W (W \leq R M) \) such that \(N \leq ess W \) [6]. Equivalently, \(M \) is an extending module if every closed submodule is a direct summand. As a generalization of extending modules, Asgari [4] introduced the concept of t-extending module, where a module \(M \) is t-extending if every t-closed submodule is a direct summand. Equivalently, \(M \) is t-extending if every submodule of \(M \) is t-essential in a direct summand. The notion of a strongly extending module is introduced in another study [7], which is a subclass of the class of extending module, where an \(R \)-module \(M \) is considered strongly extending if every submodule of \(M \) is essential in a fully invariant direct summand of \(M \) and a submodule \(N \) of \(M \) is called fully invariant if for each \(f \in End(M) \), \(f(N) \leq N \) [8]. A submodule \(N \) of an \(R \)-module \(M \) is called stable if for each \(R \)-homomorphism \(f : N \rightarrow M \), \(f(N) \leq N \) [9]. It is clear that every stable submodule is fully invariant but not conversely. An \(R \)-module \(M \) is fully stable if every submodule of \(M \) is stable [9]. An \(R \)-module \(M \) is called strongly t-extending if every submodule is t-essential in a stable direct summand. Equivalently, \(M \) is strongly t-extending if every t-closed submodule is a fully invariant direct summand [10]. Saad [7] introduced the stable extending (S-extending) modules as a generalization of FI-extending modules. An \(R \)-module \(M \) is called stable extending (S-extending) if every stable submodule of \(M \) is essential in a direct summand of \(M \). A ring \(R \) is left (right) S-extending if \(R \) is S-extending left (right) \(R \)-module and \(M \) is called FI-extending if every fully invariant submodule of \(M \) is essential in a direct summand of \(M \) [11].

In this paper, we introduce the concepts of t-stable extending and strongly t-stable extending modules. The class of t-stable extending modules contains the class of stable extending, and the class of strongly t-stable contains the class of t-stable extending and it is contained in the class of strongly t-extending.

In section two we study t-stable extending modules and their relationships with other related modules. Among other results in this section, we prove that an \(R \)-module \(M \) is a t-stable-extending \(R \)-module if and only if for each stable submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \leq M_1 \) and \(A + M_2 \leq ess M_1 \). An \(R \)-module \(M \) is t-stable extending if and only if for each stable submodule \(K \) of \(M \), there exist \(e = e^2 \in End(E(M)) \) such that \(K \leq ess e(E(M)) \) and \(E(M) \leq M \) where \(E(M) \) is the injective hull of \(M \). Let \(M \) be a stable injective relative to a stable submodule \(X \). If \(M \) is t-stable extending, then so is \(X \).

In section three, we study strongly t-stable extending modules. Many properties are given.

2. T-Stable-extending Modules

In this section we introduce the concept of t-stable extending modules which is a generalization of S-extending modules.

First we give the following definitions.

Definition 2.1: An \(R \)-module \(M \) is called t-stable extending if every stable submodule of \(M \) is t-essential in a direct summand. A ring \(R \) is called right t-stable extending if \(R \) is a right t-stable extending \(R \)-module.

Recall that an \(R \)-module is t-uniform if every submodule of \(M \) is t-essential in \(M \) [12]. As a generalization of t-uniform module, we present the following concept.

Definition 2.2: An \(R \)-module is called stable-t uniform if every stable submodule of \(M \) is t-essential in \(M \).

Remarks and Examples 2.3:

1. It is clear that every S-extending module (or t-extending module) is t-stable extending, for example:
(i) For arbitrary Z-module M, $E(M) \oplus Z_2 \oplus Z_8$ is t-extending [4], so it is t-stable extending. Also $Z_2 \oplus Q$ as Z-module is S-extending, so it is t-stable extending.

Recall that an R-module M is called t-continuous if it satisfies the following: M is t-extending, and every submodule of M which contains $Z_2(M)$ and isomorphic to direct summand of M is itself a direct summand [3]. Hence, every t-continuous module is t-stable extending. Hence, we can give the following examples:

(I) By [6, Example 2.6(2)], Let R be a Z_2-torsion ring (e.g. $R = \frac{Z}{pZ}$, for a prime number p) and set $T = (\begin{matrix} R & R \\ 0 & R \end{matrix})$. T^2 t-continuous T-module. It follows that T^2 is a t-stable extending module. However, T^2 is not stable extending. Hence T^2 is not stable extending.

(II) Let R be a ring and M be an R-module and $I \leq_{ess} R$. The R-module $E(M) \oplus R_I$ is t-continuous [6, Example 2.6(1)], so it is t-stable extending. In particular if $M = Z_p$ as Z-module. Then $Z_p \oplus \frac{Z}{pZ} \approx Z_p \oplus Z_4$ is t-stable.

(2) Let M be a nonsingular R-module. Then M is S-extending if and only if M is t-stable extending.

Proof: since M is non-singular, then the two concepts essential and t-essential coincide [5]. Hence the two concepts, S-extending and t-stable extending, are equivalent.

(3) If M is a singular module then M is t-stable extending.

Proof: since M is a singular module then $Z_2(M) = M$ and for every submodule N of $M, N + Z_2(M) = N + M = M$, hence $N \leq_{ess} M$ by [5, Prop 1.1]. But M is a direct summand of M, so every stable submodule of M is t-essential in a direct summand. Thus M is t-stable extending.

(4) Every FI-t-extending is t-stable-extending where M is FI-t-extending if every fully invariant is t-essential in a direct summand.

Proof: Let N be a stable submodule of M. Then N is fully invariant, hence N is t-essential in a direct summand.

(5) The converse of (4) holds if M is FI-quasi-injective, where an R-module M is called FI-quasi-injective if for each fully invariant submodule N of M, each R-homomorphism $f: N \to M$ can be extended to an R-endomorphism $g: M \to M$ [7].

Proof: Let N be a fully invariant submodule of M. By [7, Proposition 3.1.19] N is stable. Hence by t-stable extending property of M, N is t-essential in direct summand. Thus M is a FI-t-extending.

(6) T-stable extending module need not be extending, for example the Z-module $Z_2 \oplus Z_8$ is not extending but it is S-extending by [7, Remarks and Examples 3.1.3(3)] hence it is t-stable extending.

(7) Every stable t-uniform (hence every t-uniform) is t-stable extending.

Proof: Let N be a stable submodule of M. Hence $N \leq_{tess} M$. But $M \leq M$, so N is t-essential in a direct summand.

Recall that an R-module M is called an S-indecomposable if (0) , M are the only stable direct summand. M is S-extending and S-indecomposable if M is S-uniform. "An R-module M is called stable uniform (shortly, S-uniform) if every stable submodule of M is essential in $M"$ [7]. However we have:

Proposition 2.4: If M is t-stable extending and indecomposable, then M is stable t-uniform.

Proof: Let N be a stable submodule in M. Then $N \leq_{tess} W$ for some $W \leq M$. Since M is indecomposable, $W = M$. Thus $N \leq_{tess} M$ and so M is a t-uniform.

Note that a stable t-uniform module does not imply indecomposable, for example Z_6 as Z-module is stable t-uniform, but Z_6 is not indecomposable. Also, Z_6 is not S-indecomposable.

Proposition 2.5: Let M be an R-module. If M is t-stable extending, then every stable t-closed submodule is a direct summand and the converse holds if every t-closure of stable submodule is stable.

Proof: Let N be a stable t-closed submodule. Since M is t-stable extending, $N \leq_{tess} W$ for some $W \leq M$. Hence $N = W \leq M$, since N is a t-closed. Now if N is a stable submodule of M, then $N \leq_{tess} W$, where W is a t-closure of N [5, Lemma 2.3]. By hypothesis, W is stable, and so W is stable t-closed, which implies $W \leq M$. Thus N is t-essential in a direct summand and M is t-stable extending.
Proposition 2.6: Let M be an R-module which satisfies that the t-closure of any submodule is stable. Then M is t-stable extending if and only if M is t-extending.

Proof: Let N be a t-closed of M. Hence N is a t-closure of N and so by hypothesis, N is stable. But M is t-stable extending, so there exists $W \leq M$ such that $N \leq_W W$. Thus $N = W$ because N is t-closed and M is t-extending.

\Leftarrow: If M is t-extending, then by Remarks and Examples 2.3(1), M is t-stable extending.

Corollary 2.7: Let M be a fully stable R-module. Then the following statements are equivalent:

1. M is a t-stable extending module;
2. M is a t-extending module;
3. M is a strongly t-extending module.

Proof: Since M is a fully stable R-module, and the t-closure of any submodule of M is stable. Then (1) \iff (2) follows by Proposition 2.6.

(1)\Rightarrow(3) Let $N \leq M$. Since M is fully stable, then N is stable. Hence N is t-essential in a direct summand W. But W is stable in M. Then N is t-essential in a stable direct summand and so M is strongly t-extending.

(3)\Rightarrow(2) obvious.

Proposition 2.8: Let M be an R-module that satisfies that the t-closure of any submodule is stable. Then the following statements are equivalent:

1. M is a t-stable extending module;
2. Every stable t-closed submodule of M is a direct summand;
3. Every stable submodule is t-essential in stable direct summand.

Proof: (1)\Rightarrow(2) Let N be a stable t-closed submodule. Condition (1) implies N is t-essential in a direct summand W. Hence $N = W \leq M$ since N is a t-closed.

(2)\Rightarrow(3) Let N be a stable submodule in M. Then N has a t-closure W; such that $N \leq W$ and W is a t-closed. But W is stable by hypothesis, so that W is t-closed. Then by condition (2) $W \leq M$ and hence N is t-essential in a stable direct summand.

(3)\Rightarrow(1) clear.

The following are characterizations of the t-stable extending modules.

Theorem 2.9: An R-module M is t-stable extending if and only if for each stable submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $A \leq M_1$ and $A + M_2 \leq t_{ess} M$.

Proof: Suppose M is t-stable extending. Let A be a stable submodule of M. Then $A \leq t_{ess} M_1 \leq M_1$ and $A + M_2 \leq t_{ess} M = M_1 \oplus M_2$. It follows that $A \leq t_{ess} M_1$.

\Leftarrow Let A be a stable submodule of M. By hypothesis, there is a decomposition $M = M_1 \oplus M_2$ with $A \leq M_1$ and $A + M_2 \leq t_{ess} M = M_1 \oplus M_2$. It follows that $A \leq t_{ess} M_1$.

The following is another characterization of t-stable extending modules.

Theorem 2.10: An R-module M is t-stable extending if and only if for each stable submodule K of M, there exists $e = e^2 \in End(E(M))$ such that $K \leq t_{ess} e(E(M))$ and $e(M) \leq M$ where $E(M)$ is the injective hull of M.

Proof: Assume M is t-stable extending. Let K be a stable submodule of M. Then there exists $D \leq D(M)$ such that $K \leq t_{ess} D$ and so there is $H \leq M$ such that $D = D \oplus H$. Hence $E(M) = E(D) \oplus E(H)$. Let $e : E(M) \rightarrow E(D)$ be the projection endomorphism from $E(M)$ onto $E(D)$. Clearly $e^2 = e$ (is idempotent). Thus we have $e(M) \leq (D \oplus H)$. Also, $K \leq t_{ess} D \leq e(M) D$ implies $K \leq t_{ess} e(D) = e(E(M))$.

\Leftarrow Let K be a stable submodule of M. By hypothesis, there exists $e \in End(E(M))$, $e^2 = e$ such that $K \leq t_{ess} e(E(M))$ and $e(M) \leq M$. Since $M \leq t_{ess} M$, then $K \cap M \leq t_{ess} e(E(M)) \cap M = e(M)$. It is easy to see that $e(E(M)) \cap M = e(M)$. Also, since $K \cap M = K$, hence $K \leq t_{ess} e(M)$. But $e(M) \leq M$.

Lemma 2.11: Let $M = \bigoplus_{i \in I} M_i$. Let N be a stable submodule of M. Then $N = \bigoplus_{i \in I} (N \cap M_i)$ where $N \cap M_i$ is stable in M_i, $\forall i \in I$.

404
Proof: Let W be a stable submodule. Then $W = \bigoplus_{i \in I} (W \cap M_i)$ by [9, Proposition 4.5] we claim that $N \cap M_i$ is stable in M_i, for each $i \in I$. To prove this, let $g: W \cap M_i \rightarrow M_i$ be any R-homomorphism. Then $g(W \cap M_i) \subseteq M_i$. Consider the following $W = \bigoplus_{i \in I} (W \cap M_i) \rho$ $W \cap M_i \rightarrow M = \bigoplus_{i \in I} M_i$, where ρ is the natural projection and i is the inclusion mapping. Then $(i \circ g \circ \rho)(W) \subseteq W$ (since W is stable in M). But $(i \circ g \circ \rho)(W) = i \circ g(W \cap M_i) = i(g(W \cap M_i)) = g(W \cap M_i)$. Thus $(W \cap M_i)(W) \subseteq W$. From above $g(W \cap M_i) \subseteq M_i$, so we get $g(W \cap M_i) \subseteq W \cap M_i$ and $W \cap M_i$ is a stable submodule of M_i, for each $i \in I$.

Theorem 2.12: A direct sum of t-stable extending modules is t-stable extending.

Proof: Suppose that $M = \bigoplus_{i \in I} M_i$, M_i is t-stable extending for each $i \in I$. Let W be a stable submodule of M. Then $W = \bigoplus_{i \in I} (W \cap M_i)$ and $W \cap M_i$ is stable in M_i for each $i \in I$ by Lemma 2.11 and so by the t-stable extending property of M_i, $W \cap M_i$ is t-essential in a direct summand N_i of M_i for each $i \in I$. Then \(\bigoplus_{i \in I} (W \cap M_i) \leq_{tes} \bigoplus_{i \in I} N_i \) by [5, Corollary 1.3]. Put $N = \bigoplus_{i \in I} N_i$, so $N \leq_{\oplus} M$. Thus $N \leq_{tes} N \leq_{\oplus} M$ and \square is t-stable extending.

Note that any direct sum of extending is S-extending [7, Corollary 3.2.2], hence by Remarks and Examples 2.4(2), it is t-stable extending.

By applying Theorem 2.12, each of $Z_p \bigoplus Z_p \bigoplus Q$ (for each prime number P) $Z \bigoplus Z \bigoplus Z \bigoplus Z \bigoplus Z \ldots$ as Z-module is t-stable extending. Not that $Z_p \bigoplus Z_p$ and $Z \bigoplus Z \bigoplus Z \ldots$ are not extending. Note that by [7, Corollary 3.2.4] every finitely generated Z-module is S-extending, hence it is t-stable extending.

Proposition 2.13: Let M be an R-module which satisfies that the t-closure of any submodule is stable. If M is t-stable extending, then every direct summand is t-stable extending.

Proof: Let $N \leq_{\oplus} M$. Since M is t-stable extending, then M is t-extending by Proposition 2.6. Hence N is t-extending by [4, Proposition 2.14(1)]. It follows that N is FI-t-extending and hence by Remarks and Examples 2.3(3), N is t-stable extending.

Corollary 2.14: Let M be a fully stable R-module. If M is t-stable extending, then every direct summand is t-stable extending.

Recall that an R-module M has the summand intersection property (SIP) if the intersection of two direct summands of M is a direct summand [13]. Since S-extending and t-stable extending are equivalent in the class of nonsingular modules, thus we have every direct summand of t-stable extending module M (where M is nonsingular with SIP) is t-stable extending module. Also, we have by [2, Corollary 3.2.7, and Corollary 3.2.8 and Corollary 3.2.9] the following:

1. Let M be a nonsingular SS-module (that is every direct summand is stable). If M t-stable extending, then every direct summand is t-stable extending.
2. Every direct summand right ideal of a nonsingular t-stable extending commutative ring is t-stable extending.
3. Every direct summand of nonsingular cyclic Z-module is t-stable extending.

An R-module M is called stable-injective relative to X (simply, S-X-injective) if for each stable submodule A of X, each R-homomorphism $f: A \rightarrow M$ can be extended to an R-homomorphism $g: X \rightarrow M$ “[7, Definition 3.2.10].

By using the procedure of the proof of Theorem 2.14 [7], we have the following Lemma.

Lemma 2.15: Let M be a stable injective module relative to a stable submodule X of M. If $A \subseteq X$ such that A is a stable in X, then A is stable in M.

Proof: Let $f \in Hom(A, M)$. Since M is stable injective relative to X, there exists an R-homomorphism $g: X \rightarrow M$ such that $g \circ i = f$ where i is the inclusion mapping from A into X. It follows that $g(X) \subseteq X$, since X is stable in M. So $g \circ i(A) = g(A) \subseteq X$; that is $g|_A : A \rightarrow X$. But A is stable in M, so that $g|_A$ is stable in A. Thus $f(A) \subseteq A$ and A is stable in M.

Proposition 2.16: Let M be a stable injective relative to a stable submodule X. If M t-stable extending, then so is X.

Proof: To prove X is t-stable. Let A be a stable submodule of X. By Lemma 2.15, A is stable in M. Since M is t-stable extending, there exists $D \leq_{\oplus} M$ such that $A \leq_{tes} D$ it follows that $M = D \oplus D'$ for some $D \leq M$ and so $A = X \cap D \leq_{tes} X \cap D \leq_{\oplus} M$ by (5, Corollary 1.3).

3. Strongly t-stable extending modules
In this section, we extend the notion of t-stable extending modules into strongly t-stable extending modules. We study these classes of modules and their relations with some related concepts.

Definition 3.1: An R-module M is called strongly t-stable extending if each stable submodule N of M. N is t-essential in a stable direct summand.

Remarks and Examples 3.2:

1. It is clear that every strongly t-stable extending is t-stable extending.
2. Every strongly t-extending (hence every Z_2-torsion) module is strongly t-stable extending. In particular, each of Z-module $M = Z_n \oplus Z$ where n is a positive integer is strongly t-extending (see [10, Example 3.3]. Thus M is strongly t-stable extending.
3. The converse of (2) is not true as the following example shows: Let $M = Z_2 \oplus Z$. Let N be a stable submodule of M. Then $N = (N \cap Z) \oplus (N \cap Z)$, where $N \cap Z$ is stable in Z by Lemma 2.11. Since the only stable submodules of Z are Z, (0), then $N = Z \oplus Z$ or $N = (0) \oplus (0)$ and hence $N \leq_{tes} M \leq^{\oplus} M$. Thus M is a strongly t-stable extending module.
4. Recall that an R-module M is called weak duo if every direct summand is fully invariant [14]. Let M be a weak duo. Then M is strongly t-stable extending if and only if M is a t-stable extending module.

Proof: (\Rightarrow) It follows by (1)

(\Leftarrow) Let N be a stable submodule of M. Then $N \leq_{tes} M \leq^{\oplus} M$. Since M is weak duo, W is a fully invariant in M and then by [7, Lemma 2.1.6] W is stable. Thus M is strongly t-stable extending.

5. Let M be a fully stable module. Then the following are equivalent:
 1. M is t-stable extending;
 2. M is t-extending;
 3. M is strongly t-stable extending;
 4. M is strongly t-extending;
 5. Every stable t-uniform module is strongly t-stable extending.

6. If M is S-indecomposable and M is strongly t-stable extending, then M is a stable t-uniform.

7. If M is S-uniform, then M is strongly t-stable extending and M is S-indecomposable.

8. Let M be an indecomposable module. Then M is strongly t-stable extending if and only if M is t-stable extending.

9. If M is a FI-t-extending, then M is strongly t-stable extending. The converse holds if M is FI-quasi injective.

Proposition 3.3: Let M be an R-module which satisfies that the t-closure of any submodule is equivalent. Then the following statements are equivalent:

1. M is strongly t-stable extending;
2. M is t-stable extending;
3. M is t-extending;
4. Every stable t-closed is a direct summand;
5. M is strongly t-extending.

Proof:

1. (\Rightarrow) Let N be a stable submodule of N. Then by definition of strongly t-stable extending, N is t-essential in a fully invariant direct summand. Thus M is strongly t-extending.

2. (\Rightarrow) Since M is t-extending, every t-closed is a direct summand, so it is clear that every stable t-closed is a direct summand.

3. (\Rightarrow) It follows by Proposition 2.8.

4. (\Rightarrow) It follows by Proposition 2.6.
(4) \(\Rightarrow \) (1) Let \(N \) be a stable submodule of \(M \). Then there exists a t-closure of \(N \) say \(W \) such that \(N \leq_{\text{tes}} W \). By hypothesis, \(W \) is stable t-closed of \(M \), hence \(W \leq \otimes M \). Thus \(M \) is strongly t-stable extending.

(5) \(\Rightarrow \) (1) It follows by Remarks and Examples 3.2(2).

(1) \(\Rightarrow \) (5) Let \(N \) be a t-closed of \(M \). Hence \(N \) is a t-closure of \(N \) and so by hypothesis \(N \) is stable.

Since \(M \) is strongly t-stable extending, \(N \leq_{\text{tes}} W \) for some stable direct summand \(W \). It follows that \(N = W \), since \(N \) is t-closed. Thus \(N \) is a stable direct summand and \(M \) is strongly t-extending.

Recall that an \(R \)-module \(M \) is a multiplication module if for each \(N \leq M \), there exists an ideal \(I \) of \(R \) such that \(N = MI \) [15].

Proposition 3.4: Let \(M \) be a multiplication t-extending. Then \(M \) is strongly t-stable extending.

Proof: Let \(N \) be a stable submodule of \(M \). Since \(M \) is t-stable extending, then there exists \(H \leq \otimes M \) such that \(N \leq_{\text{tes}} H \leq \otimes M \). But \(M \) is a multiplication module implies \(H \) is a fully invariant submodule of \(M \) and so by [7, Lemma 2.1.6], \(H \) is stable. Thus \(M \) is t-essential in stable direct summand of \(M \). Therefore, \(M \) is strongly t-stable extending.

Corollary 3.5: Every cyclic t-stable extending module over a commutative ring is strongly t-stable extending.

Corollary 3.6: Every commutative t-stable extending ring is strongly t-stable extending.

The following is a characterization of strongly t-stable extending modules.

Theorem 3.7: Let \(M \) be an \(R \)-module. \(M \) is strongly t-stable extending if for each stable submodule \(A \) of \(M \), there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \leq M_1 \) and \(M_2 \) is a stable submodule of \(M \) and \(A + M_2 \leq_{\text{tes}} M_2 \).

Proof: Let \(A \) be a stable submodule of \(M \). Since \(M \) is strongly t-stable extending, \(A \leq_{\text{tes}} M_1 \leq \otimes M \) and \(M_1 \) is stable in \(M \). Hence \(M = M_1 \oplus M_2 \) for some \(M_2 \leq M \). Since \(A \leq_{\text{tes}} M_1 \), \(M_2 \leq_{\text{tes}} M_2 \), then \(A + M_2 \leq_{\text{tes}} M_1 \oplus M_2 = M \), by [5, Corollary 1.3].

\[\iff \] Let \(A \) be a stable submodule of \(M \). By hypothesis, there is a decomposition \(M = M_1 \oplus M_2 \) such that \(A \leq M_1 \), \(M_1 \) is stable in \(M \) and \(A + M_2 \leq_{\text{tes}} M_2 \). Since \(A + M_2 = A \oplus M_2 \leq_{\text{tes}} M_1 \oplus M_2 = M \), then \(A \leq_{\text{tes}} M_1 \). But \(M_1 \) is a stable direct summand of \(M \). Thus \(M \) is strongly t-stable extending.

Theorem 3.8: Let \(M = M_1 \oplus M_2 \), where \(M_1 \) and \(M_2 \) are \(R \)-modules, such that \(M \) is an abelian module \((\text{ann} M_1 R \oplus \text{ann} M_2 R = R) \). If \(M_1 \) and \(M_2 \) are strongly t-stable extending, then \(= f (f_1 \oplus f_2) \) is strongly t-stable extending.

Proof: Let \(N \) be a stable submodule of \(M \). By Lemma 2.11, \(N = (N \cap M_1) \oplus (N \cap M_2) \) where \(N \cap M_1 \) is stable in \(M_1 \), \(N \cap M_2 \) is stable in \(M_2 \). Put \(N_1 = (N \cap M_1), N_2 = (N \cap M_2) \). Since \(M_1 \) and \(M_2 \) are strongly t-stable extending, there exist \(W_1 \leq \otimes M_1, W_2 \leq \otimes M_2 \) and \(W_1 \) is stable in \(M_1 \) for \(i = 1, 2 \) and \(N_i \leq_{\text{tes}} W_i \). It follows that \(N_1 \oplus N_2 \leq_{\text{tes}} W_1 \oplus W_2 \) by [5, Corollary 1.3]. Since \(W_1 \leq \otimes M_1, W_2 \leq \otimes M_2 \), then \(W_1 \oplus W_2 \leq \otimes M \). On other hand, \(M \) is abelian (or \(\text{ann} M_1 R \oplus \text{ann} M_2 R = R \)) implies \(\text{Hom}(M_1, M_2) = 0, \text{Hom}(M_2, M_1) = 0 \), by [14, Theorem 4.6]. Hence \(\text{End}(M) \cong \text{End}(M_1) \oplus \text{End}(M_2) \). Since for each \(f \in \text{End}(M) \), \(f = (f_1, f_2) \), \(f_1 \in \text{End}(M_1), f_2 \in \text{End}(M_2) \) and \(f(W_1 \oplus W_2) = f(W_1) \oplus f(W_2) \). But \(W_1 \) and \(W_2 \) are stable in \(M_1, M_2 \) respectively and so that \(f(W_1) \not\subseteq W_1, f(W_2) \not\subseteq W_2 \). Thus \(f(W_1 \oplus W_2) \not\subseteq W_1 \oplus W_2 \), hence \(W_1 \oplus W_2 \) is a fully invariant in \(M \), \(W_1 \oplus W_2 \leq \otimes M \), then [2, Lemma 2.1.6] \(W_1 \oplus W_2 \) is stable in \(M \).

Now we ask the following: Is the property of being strongly t-stable extending inherit to a submodule?

Definition 3.9: An \(R \)-module \(M \) is said to be stable-injective if \(M \) is stable-injective to \(N(M) = S-N \)-injective), where \(N(M) \) is any \(R \)-module.

Theorem 3.10: Let \(M \) be a stable-injective \(R \)-module. If \(M \) is strongly t-stable extending, then every stable submodule of \(M \) is strongly t-stable extending.

Proof: Let \(X \) be a stable submodule of \(M \). To prove \(X \) is strongly t-stable extending, let \(A \) be a stable submodule of \(X \). Since \(M \) is stable-injective, then \(M \) stable-injective relative to \(X \) and hence by Lemma 2.15, \(A \) is strongly t-stable extending and \(A \) is stable in \(M \) imply there
exists a stable direct summand D such that \(A \leq_{\text{tes}} D \leq_{\oplus} M \). Thus \(M = D \oplus D' \) for some \(D' \leq M \). Since \(X \) is stable in \(X = (X \cap D) \oplus (X \cap D') \) where \(X \cap D \) is stable of \(D, X \cap D' \) is stable of \(D' \) by Lemma 2.11. Now \(A \leq_{\text{tes}} D \) implies \(A = X \cap A \leq_{\text{tes}} X \cap D \) by [3,Corollary 1.3]. But \((X \cap D) \leq_{\oplus} X\), so that \(A \leq_{\text{tes}} X \cap A \leq_{\oplus} X \). We claim that \(X \cap D \) is stable in \(X \). Since \(X \cap D \) is stable of \(D \) and \(X \cap D \) is stable in \(D \), then \(X \cap D \) is stable of \(M \) by Lemma 2.15. But \(X \cap D \) is stable in \(M \) and \(X \cap D \subseteq X \) imply \(X \cap D \) is stable in \(X \).

Proposition 3.11: Let \(M \) be an \(R \)-module which satisfies that the t-closure of any submodule is stable. If \(M \) is strongly t-stable extending, then every direct summand is strongly t-stable extending.

Proof: Let \(W \leq_{\oplus} M \). Since \(M \) satisfies that the t-closure of any submodule is stable, then by (Proposition 3.3) \(M \) is strongly t-extending and so by [8, Theorem 3.5] \(W \) is strongly t-extending. Thus by Remarks and Examples 3.2(2), \(W \) is strongly t-stable extending.

Corollary 3.12: Let \(M \) be a fully stable \(R \)-module. If \(M \) is strongly t-stable extending, then every direct summand is strongly t-stable extending.

References